Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / ___5__ ___1__ / / 6 _2 0 8 / 7 4
For example, the lowest common ancestor (LCA) of nodes
5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.二刷 40%
思考:遍历到节点node,要判断它是否是p、q的LCA,想知道node是否等于p、q,以及node的左子树和右子树里包含p,q的情况。
建一个helper function,返回以node为根的树里包含p、q的情况。
若返回1,表示包含p; 若返回2,表示包含q; 若返回3,表示包含p和q; 若返回0,表示都不包含。
遍历到node,可以分这几种情况:
如果 node == p,再看node的左右子树里是否包含q,如果包含返回3,并且把node设为result
如果 node == q,再看node的左右子树里是否包含p,如果包含返回3,并把node设为result
如果 node != p 且node != q
看node的左子树,如果返回3(包含p、q),则返回3(但不需要设置result, 因为result应该在root的左子树里)
同理看node的右子树,如果返回3,则root也返回3
如果helper(root.left) + helper(root.right) == 3,说明p和q一个在root的左子树里,一个在右子树里,把root设为result,返回3
所有为3的情况都返回了,不为3的话返回helper(root.left) + helper(root.right)/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { TreeNode node = null; public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { findNode(root, p, q); return node; } public int findNode(TreeNode root, TreeNode p, TreeNode q) { if (root == null) { return 0; } int re = 0; if (root == p) { re = 1 + findNode(root.left, p, q) + findNode(root.right, p, q); } else if (root == q) { re = 2 + findNode(root.left, p, q) + findNode(root.right, p, q); } else { int left = findNode(root.left, p, q); if (left == 3) { return 3; } int right = findNode(root.right, p, q); if (right == 3) { return 3; } re = left + right; } if (re == 3) { node = root; } return re; } }
recursively root,检查root是否是pq,root的左子树是否有pq,root的右子树是否有pq。 18%
如果左子树不含pq,lowestCommonAncestor(root.right,p,q)返回空,LCA在右子树中。
递归,检查root,检查root.left, 检查root.right
**这种办法是基于p、q一定在root中
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root==null) return null; if(root==p || root==q) return root; TreeNode left=lowestCommonAncestor(root.left, p, q), right = lowestCommonAncestor(root.right, p, q); if(left!=null && right!=null) return root; if(right==null) return left; if(left==null) return right; return null; } }