一、 SpringCloud 中 Feign 核心原理
如果不了解 SpringCloud 中 Feign 核心原理,不会真正的了解 SpringCloud 的性能优化和配置优化,也就不可能做到真正掌握 SpringCloud。
本章从Feign 远程调用的重要组件开始,图文并茂的介绍 Feigh 远程调用的执行流程、Feign 本地 JDK Proxy 实例的创建流程,彻底的为大家解读 SpringCloud 的核心知识。使得广大的工程师不光做到知其然,更能知其所以然。
1.1 简介:Feign远程调用的基本流程
Feign远程调用,核心就是通过一系列的封装和处理,将以JAVA注解的方式定义的远程调用API接口,最终转换成HTTP的请求形式,然后将HTTP的请求的响应结果,解码成JAVA Bean,放回给调用者。Feign远程调用的基本流程,大致如下图所示。
从上图可以看到,Feign通过处理注解,将请求模板化,当实际调用的时候,传入参数,根据参数再应用到请求上,进而转化成真正的 Request 请求。通过Feign以及JAVA的动态代理机制,使得Java 开发人员,可以不用通过HTTP框架去封装HTTP请求报文的方式,完成远程服务的HTTP调用。
1.2 Feign 远程调用的重要组件
在微服务启动时,Feign会进行包扫描,对加@FeignClient注解的接口,按照注解的规则,创建远程接口的本地JDK Proxy代理实例。然后,将这些本地Proxy代理实例,注入到Spring IOC容器中。当远程接口的方法被调用,由Proxy代理实例去完成真正的远程访问,并且返回结果。
为了清晰的介绍SpringCloud中Feign运行机制和原理,在这里,首先为大家梳理一下Feign中几个重要组件。
1.2.1 远程接口的本地JDK Proxy代理实例
远程接口的本地JDK Proxy代理实例,有以下特点:
(1)Proxy代理实例,实现了一个加 @FeignClient 注解的远程调用接口;
(2)Proxy代理实例,能在内部进行HTTP请求的封装,以及发送HTTP 请求;
(3)Proxy代理实例,能处理远程HTTP请求的响应,并且完成结果的解码,然后返回给调用者。
下面以一个简单的远程服务的调用接口 DemoClient 为例,具体介绍一下远程接口的本地JDK Proxy代理实例的创建过程。
DemoClient 接口,有两个非常简单的远程调用抽象方法:一个为hello() 抽象方法,用于完成远程URL “/api/demo/hello/v1”的HTTP请求;一个为 echo(…) 抽象方法,用于完成远程URL “/api/demo/echo/{word}/v1”的HTTP请求。具体如下图所示。
图2 远程接口的本地JDK Proxy代理实例示意图
DemoClient 接口代码如下:
注意,上面的代码中,在DemoClient 接口上,加有@FeignClient 注解。也即是说,Feign在启动时,会为其创建一个本地JDK Proxy代理实例,并注册到Spring IOC容器。
如何使用呢?可以通过@Resource注解,按照类型匹配(这里的类型为DemoClient接口类型),从Spring IOC容器找到这个代理实例,并且装配给需要的成员变量。
DemoClient的 本地JDK Proxy 代理实例的使用的代码如下:
DemoClient的本地JDK Proxy代理实例的创建过程,比较复杂,稍后作为重点介绍。先来看另外两个重要的逻辑组件。
1.2.2 调用处理器 InvocationHandler
大家知道,通过 JDK Proxy 生成动态代理类,核心步骤就是需要定制一个调用处理器,具体来说,就是实现JDK中位于java.lang.reflect 包中的 InvocationHandler 调用处理器接口,并且实现该接口的 invoke(…) 抽象方法。
为了创建Feign的远程接口的代理实现类,Feign提供了自己的一个默认的调用处理器,叫做 FeignInvocationHandler 类,该类处于 feign-core 核心jar包中。当然,调用处理器可以进行替换,如果Feign与Hystrix结合使用,则会替换成 HystrixInvocationHandler 调用处理器类,类处于 feign-hystrix 的jar包中。
图3 Feign中实现的 InvocationHandler 调用处理器
1.2.1 默认的调用处理器 FeignInvocationHandler
默认的调用处理器 FeignInvocationHandler 是一个相对简单的类,有一个非常重要Map类型成员 dispatch 映射,保存着远程接口方法到MethodHandler方法处理器的映射。
以前面示例中DemoClient 接口为例,其代理实现类的调用处理器 FeignInvocationHandler 的dispatch 成员的内存结构图如图3所示。
图4 DemoClient代理实例的调用处理器 FeignInvocationHandler的dispatch 成员
为何在图3中的Map类型成员 dispatch 映射对象中,有两个Key-Value键值对呢?
原因是:默认的调用处理器 FeignInvocationHandle,在处理远程方法调用的时候,会根据Java反射的方法实例,在dispatch 映射对象中,找到对应的MethodHandler 方法处理器,然后交给MethodHandler 完成实际的HTTP请求和结果的处理。前面示例中的 DemoClient 远程调用接口,有两个远程调用方法,所以,其代理实现类的调用处理器 FeignInvocationHandler 的dispatch 成员,有两个有两个Key-Value键值对。
FeignInvocationHandler的关键源码,节选如下:
源码很简单,重点在于invoke(…)方法,虽然核心代码只有一行,但是其功能是复杂的:
(1)根据Java反射的方法实例,在dispatch 映射对象中,找到对应的MethodHandler 方法处理器;
(2)调用MethodHandler方法处理器的 invoke(...) 方法,完成实际的HTTP请求和结果的处理。
补充说明一下:MethodHandler 方法处理器,和JDK 动态代理机制中位于 java.lang.reflect 包的 InvocationHandler 调用处理器接口,没有任何的继承和实现关系。MethodHandler 仅仅是Feign自定义的,一个非常简单接口。
1.2.2 方法处理器 MethodHandler
Feign的方法处理器 MethodHandler 是一个独立的接口,定义在 InvocationHandlerFactory 接口中,仅仅拥有一个invoke(…)方法,源码如下:
MethodHandler 的invoke(…)方法,主要职责是完成实际远程URL请求,然后返回解码后的远程URL的响应结果。Feign提供了默认的 SynchronousMethodHandler 实现类,提供了基本的远程URL的同步请求处理。有关 SynchronousMethodHandler类以及其与MethodHandler的关系,大致如图4所示。
图5 Feign的MethodHandler方法处理器
为了彻底了解方法处理器,来读一下 SynchronousMethodHandler 方法处理器的源码,大致如下:
SynchronousMethodHandler的invoke(…)方法,调用了自己的executeAndDecode(…) 请求执行和结果解码方法。该方法的工作步骤:
(1)首先通 RequestTemplate 请求模板实例,生成远程URL请求实例 request;
(2)然后用自己的 feign 客户端client成员,excecute(…) 执行请求,并且获取 response 响应;
(3)对response 响应进行结果解码。
1.2.3 Feign 客户端组件 feign.Client
客户端组件是Feign中一个非常重要的组件,负责端到端的执行URL请求。其核心的逻辑:发送request请求到服务器,并接收response响应后进行解码。
feign.Client 类,是代表客户端的顶层接口,只有一个抽象方法,源码如下:
由于不同的feign.Client 实现类,内部完成HTTP请求的组件和技术不同,故,feign.Client 有多个不同的实现。这里举出几个例子:
(1)Client.Default类:默认的feign.Client 客户端实现类,内部使用HttpURLConnnection 完成URL请求处理;
(2)ApacheHttpClient 类:内部使用 Apache httpclient 开源组件完成URL请求处理的feign.Client 客户端实现类;
(3)OkHttpClient类:内部使用 OkHttp3 开源组件完成URL请求处理的feign.Client 客户端实现类。
(4)LoadBalancerFeignClient 类:内部使用 Ribben 负载均衡技术完成URL请求处理的feign.Client 客户端实现类。
此外,还有一些特殊场景使用的feign.Client客户端实现类,也可以定制自己的feign.Client实现类。下面对上面几个常见的客户端实现类,进行简要介绍。
图6 feign.Client客户端实现类
一:Client.Default类:
作为默认的Client 接口的实现类,在Client.Default内部使用JDK自带的HttpURLConnnection类实现URL网络请求。
图7 默认的Client 接口的客户端实现类
在JKD1.8中,虽然在HttpURLConnnection 底层,使用了非常简单的HTTP连接池技术,但是,其HTTP连接的复用能力,实际是非常弱的,性能当然也很低。具体的原因,参见后面的“SpringCloud与长连接的深入剖析”专题内容。
二:ApacheHttpClient类
ApacheHttpClient 客户端类的内部,使用 Apache HttpClient开源组件完成URL请求的处理。
从代码开发的角度而言,Apache HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性,它不仅使客户端发送Http请求变得容易,而且也方便开发人员测试接口。既提高了开发的效率,也方便提高代码的健壮性。
从性能的角度而言,Apache HttpClient带有连接池的功能,具备优秀的HTTP连接的复用能力。关于带有连接池Apache HttpClient的性能提升倍数,具体可以参见后面的对比试验。
ApacheHttpClient 类处于 feign-httpclient 的专门jar包中,如果使用,还需要通过Maven依赖或者其他的方式,倒入配套版本的专门jar包。
三:OkHttpClient类
OkHttpClient 客户端类的内部,使用OkHttp3 开源组件完成URL请求处理。OkHttp3 开源组件由Square公司开发,用于替代HttpUrlConnection和Apache HttpClient。由于OkHttp3较好的支持 SPDY协议(SPDY是Google开发的基于TCP的传输层协议,用以最小化网络延迟,提升网络速度,优化用户的网络使用体验。),从Android4.4开始,google已经开始将Android源码中的 HttpURLConnection 请求类使用OkHttp进行了替换。也就是说,对于Android 移动端APP开发来说,OkHttp3 组件,是基础的开发组件之一。
四:LoadBalancerFeignClient 类
LoadBalancerFeignClient 内部使用了 Ribben 客户端负载均衡技术完成URL请求处理。在原理上,简单的使用了delegate包装代理模式:Ribben负载均衡组件计算出合适的服务端server之后,由内部包装 delegate 代理客户端完成到服务端server的HTTP请求;所封装的 delegate 客户端代理实例的类型,可以是 Client.Default 默认客户端,也可以是 ApacheHttpClient 客户端类或OkHttpClient 高性能客户端类,还可以其他的定制的feign.Client 客户端实现类型。
LoadBalancerFeignClient 负载均衡客户端实现类,具体如下图所示。
图8 LoadBalancerFeignClient 负载均衡客户端实现类
1.1 Feigh 远程调用的执行流程
由于Feign远程调用接口的JDK Proxy实例的InvokeHandler调用处理器有多种,导致Feign远程调用的执行流程,也稍微有所区别,但是远程调用执行流程的主要步骤,是一致的。这里主要介绍两类JDK Proxy实例的InvokeHandler调用处理器相关的远程调用执行流程:
(1)与 默认的调用处理器 FeignInvocationHandler 相关的远程调用执行流程;
(2)与 Hystrix调用处理器 HystrixInvocationHandler 相关的远程调用执行流程。
介绍过程中,还是以前面的DemoClient的JDK Proxy远程动态代理实例的执行过程为例,演示分析Feigh远程调用的执行流程。
1.1.1 与 FeignInvocationHandler 相关的远程调用执行流程
FeignInvocationHandler是默认的调用处理器,如果不对Feign做特殊的配置,则Feign将使用此调用处理器。结合前面的DemoClient的JDK Proxy远程动态代理实例的hello()远程调用执行过程,在这里,详细的介绍一下与 FeignInvocationHandler 相关的远程调用执行流程,大致如下图所示。
图6 与 FeignInvocationHandler 相关的远程调用执行流程
整体的远程调用执行流程,大致分为4步,具体如下:
第1步:通过Spring IOC 容器实例,装配代理实例,然后进行远程调用。
前文讲到,Feign在启动时,会为加上了@FeignClient注解的所有远程接口(包括 DemoClient 接口),创建一个本地JDK Proxy代理实例,并注册到Spring IOC容器。在这里,暂且将这个Proxy代理实例,叫做 DemoClientProxy,稍后,会详细介绍这个Proxy代理实例的具体创建过程。
然后,在本实例的UserController 调用代码中,通过@Resource注解,按照类型或者名称进行匹配(这里的类型为DemoClient接口类型),从Spring IOC容器找到这个代理实例,并且装配给@Resource注解所在的成员变量,本实例的成员变量的名称为 demoClient。
在需要代进行hello()远程调用时,直接通过 demoClient 成员变量,调用JDK Proxy动态代理实例的hello()方法。
第2步:执行 InvokeHandler 调用处理器的invoke(…)方法
前面讲到,JDK Proxy动态代理实例的真正的方法调用过程,具体是通过 InvokeHandler 调用处理器完成的。故,这里的DemoClientProxy代理实例,会调用到默认的FeignInvocationHandler 调用处理器实例的invoke(…)方法。
通过前面 FeignInvocationHandler 调用处理器的详细介绍,大家已经知道,默认的调用处理器 FeignInvocationHandle,内部保持了一个远程调用方法实例和方法处理器的一个Key-Value键值对Map映射。FeignInvocationHandle 在其invoke(…)方法中,会根据Java反射的方法实例,在dispatch 映射对象中,找到对应的 MethodHandler 方法处理器,然后由后者完成实际的HTTP请求和结果的处理。
所以在第2步中,FeignInvocationHandle 会从自己的 dispatch映射中,找到hello()方法所对应的MethodHandler 方法处理器,然后调用其 invoke(…)方法。
第3步:执行 MethodHandler 方法处理器的invoke(…)方法
通过前面关于 MethodHandler 方法处理器的非常详细的组件介绍,大家都知道,feign默认的方法处理器为 SynchronousMethodHandler,其invoke(…)方法主要是通过内部成员feign客户端成员 client,完成远程 URL 请求执行和获取远程结果。
feign.Client 客户端有多种类型,不同的类型,完成URL请求处理的具体方式不同。
第4步:通过 feign.Client 客户端成员,完成远程 URL 请求执行和获取远程结果
如果MethodHandler方法处理器实例中的client客户端,是默认的 feign.Client.Default 实现类性,则使用JDK自带的HttpURLConnnection类,完成远程 URL 请求执行和获取远程结果。
如果MethodHandler方法处理器实例中的client客户端,是 ApacheHttpClient 客户端实现类性,则使用 Apache httpclient 开源组件,完成远程 URL 请求执行和获取远程结果。
通过以上四步,应该可以清晰的了解到了 SpringCloud中的 feign 远程调用执行流程和运行机制。
实际上,为了简明扼要的介绍清楚默认的调用流程,上面的流程,实际上省略了一个步骤:第3步,实际可以分为两小步。为啥呢? SynchronousMethodHandler 并不是直接完成远程URL的请求,而是通过负载均衡机制,定位到合适的远程server 服务器,然后再完成真正的远程URL请求。换句话说,SynchronousMethodHandler实例的client成员,其实际不是feign.Client.Default类型,而是 LoadBalancerFeignClient 客户端负载均衡类型。 因此,上面的第3步,如果进一步细分话,大致如下:
(1)首先通过 SynchronousMethodHandler 内部的client实例,实质为负责客户端负载均衡 LoadBalancerFeignClient 实例,首先查找到远程的 server 服务端;
(2) 然后再由LoadBalancerFeignClient 实例内部包装的feign.Client.Default 内部类实例,去请求server端服务器,完成URL请求处理。
最后,说明下,默认的与 FeignInvocationHandler 相关的远程调用执行流程,在运行机制以及调用性能上,满足不了生产环境的要求,为啥呢? 大致原因有以下两点:
(1) 没有远程调用过程中的熔断监测和恢复机制;
(2) 也没有用到高性能的HTTP连接池技术。
接下来,将为大家介绍一下用到熔断监测和恢复机制 Hystrix 技术的远程调用执行流程,该流程中,远程接口的JDK Proxy动态代理实例所使用的调用处理器,叫做 HystrixInvocationHandler 调用处理器。
二、源码分析
1、 客户端配置、Bean定义加载流程
EnableFeignClients
@Import(FeignClientsRegistrar.class) public @interface EnableFeignClients { // basePackages 的别名 String[] value() default {}; //@FeignClient 注解组件扫描的基础包路径 String[] basePackages() default {}; Class<?>[] basePackageClasses() default {}; //指定所有 feign 客户端的自定义配置. Class<?>[] defaultConfiguration() default {}; //@FeignClient 注解的客户端类列表,不为空的话,关闭类路径的扫描 Class<?>[] clients() default {}; }
在容器期间注册一些 bean的定义。FeignClientsRegistrar 可以看到向容器中注册一个 FeignClientFactoryBean 类型的 bean 定义,由它生成最终目标接口的 bean 实例
@Override public void registerBeanDefinitions(AnnotationMetadata metadata, BeanDefinitionRegistry registry) { //注册默认的配置 registerDefaultConfiguration(metadata, registry); //注册客户端 registerFeignClients(metadata, registry); } public void registerFeignClients(AnnotationMetadata metadata, BeanDefinitionRegistry registry) { //忽略部分逻辑代码... //@EnableFeignClients 无指定客户端类情况下,设置过滤筛选的注解类和获取扫描基础包路径 if (clients == null || clients.length == 0) { scanner.addIncludeFilter(annotationTypeFilter); basePackages = getBasePackages(metadata); } for (String basePackage : basePackages) { Set<BeanDefinition> candidateComponents = scanner.findCandidateComponents(basePackage); for (BeanDefinition candidateComponent : candidateComponents) { if (candidateComponent instanceof AnnotatedBeanDefinition) { //加载@FeignClient 注解的属性集 Map<String, Object> attributes = annotationMetadata.getAnnotationAttributes(FeignClient.class.getCanonicalName()); //加载客户端名称,其 contextId 可覆盖 value属性 String name = getClientName(attributes); //注册客户端配置 registerClientConfiguration(registry, name,attributes.get("configuration")); //注册客户端实例Bean(重点) registerFeignClient(registry, annotationMetadata, attributes); } } } } private void registerFeignClient(BeanDefinitionRegistry registry, AnnotationMetadata annotationMetadata, Map<String, Object> attributes) { //获取被注解的目标类型 String className = annotationMetadata.getClassName(); //生成 FeignClientFactoryBean bean的定义(重点) BeanDefinitionBuilder definition = BeanDefinitionBuilder.genericBeanDefinition(FeignClientFactoryBean.class); validate(attributes); definition.addPropertyValue("url", getUrl(attributes)); definition.addPropertyValue("path", getPath(attributes)); String name = getName(attributes); definition.addPropertyValue("name", name); String contextId = getContextId(attributes); definition.addPropertyValue("contextId", contextId); definition.addPropertyValue("type", className); definition.addPropertyValue("decode404", attributes.get("decode404")); definition.addPropertyValue("fallback", attributes.get("fallback")); definition.addPropertyValue("fallbackFactory", attributes.get("fallbackFactory")); definition.setAutowireMode(AbstractBeanDefinition.AUTOWIRE_BY_TYPE); String alias = contextId + "FeignClient"; AbstractBeanDefinition beanDefinition = definition.getBeanDefinition(); boolean primary = (Boolean) attributes.get("primary"); // has a default, won't be null beanDefinition.setPrimary(primary); String qualifier = getQualifier(attributes); if (StringUtils.hasText(qualifier)) { alias = qualifier; } BeanDefinitionHolder holder = new BeanDefinitionHolder(beanDefinition, className, new String[] { alias }); BeanDefinitionReaderUtils.registerBeanDefinition(holder, registry); }
2、客户端实例加载流程
FeignClientFactoryBean 实现了 FactoryBean、InitializingBean,通过 FactoryBean 获取到自定义的Bean实例。
<T> T getTarget() { //FeignContext工厂类,能够为每个feign客户端创建一个IOC子容器,并创建相关组件的实例 FeignContext context = this.applicationContext.getBean(FeignContext.class); //创建Builder实例(构造Http API的工厂实例),设置相关组件配置(编码、解码器和拦截器(RequestInterceptor)等) Feign.Builder builder = feign(context); if (!StringUtils.hasText(this.url)) { if (!this.name.startsWith("http")) { this.url = "http://" + this.name; } else { this.url = this.name; } //path 不为空,追加到url后面,作为前缀 this.url += cleanPath(); //负载均衡 return (T) loadBalance(builder, context, new HardCodedTarget<>(this.type, this.name, this.url)); } //忽略部分逻辑代码... } protected <T> T loadBalance(Feign.Builder builder, FeignContext context, HardCodedTarget<T> target) { //加载Feign 负载均衡客户端(LoadBalancerFeignClient) Client client = getOptional(context, Client.class); if (client != null) { builder.client(client); //获取(HystrixTargeter) Targeter targeter = get(context, Targeter.class); return targeter.target(this, builder, context, target); } }
Feign
public Feign build() { //创建代理方法处理器的工厂实例 SynchronousMethodHandler.Factory synchronousMethodHandlerFactory = new SynchronousMethodHandler.Factory(client, retryer, requestInterceptors, logger, logLevel, decode404, closeAfterDecode, propagationPolicy); //创建请求方法 转 Rest请求的方法执行(MethodHandler) 解析处理实例 ParseHandlersByName handlersByName = new ParseHandlersByName(contract, options, encoder, decoder, queryMapEncoder, errorDecoder, synchronousMethodHandlerFactory); //创建feign 反射,实例化代理成目标接口实例 return new ReflectiveFeign(handlersByName, invocationHandlerFactory, queryMapEncoder); }
ReflectiveFeign
public <T> T newInstance(Target<T> target) { //获取目标接口方法的执行实例 Map<String, MethodHandler> nameToHandler = targetToHandlersByName.apply(target); Map<Method, MethodHandler> methodToHandler = new LinkedHashMap<Method, MethodHandler>(); List<DefaultMethodHandler> defaultMethodHandlers = new LinkedList<DefaultMethodHandler>(); //遍历目标接口方法 for (Method method : target.type().getMethods()) { if (method.getDeclaringClass() == Object.class) { continue; } else if (Util.isDefault(method)) { DefaultMethodHandler handler = new DefaultMethodHandler(method); defaultMethodHandlers.add(handler); methodToHandler.put(method, handler); } else { //所有方法执行实例,添加到分发器中 methodToHandler.put(method, nameToHandler.get(Feign.configKey(target.type(), method))); } } //创建目标方法调用执行实例,对目标接口所有方法的执行都会通过该实例发出调用 InvocationHandler handler = factory.create(target, methodToHandler); //创建目标接口的代理实例 T proxy = (T) Proxy.newProxyInstance(target.type().getClassLoader(), new Class<?>[] {target.type()}, handler); for (DefaultMethodHandler defaultMethodHandler : defaultMethodHandlers) { defaultMethodHandler.bindTo(proxy); } return proxy; }
feign.ReflectiveFeign.ParseHandlersByName
public <T> T newInstance(Target<T> target) { //获取目标接口方法的执行实例 Map<String, MethodHandler> nameToHandler = targetToHandlersByName.apply(target); Map<Method, MethodHandler> methodToHandler = new LinkedHashMap<Method, MethodHandler>(); List<DefaultMethodHandler> defaultMethodHandlers = new LinkedList<DefaultMethodHandler>(); //遍历目标接口方法 for (Method method : target.type().getMethods()) { if (method.getDeclaringClass() == Object.class) { continue; } else if (Util.isDefault(method)) { DefaultMethodHandler handler = new DefaultMethodHandler(method); defaultMethodHandlers.add(handler); methodToHandler.put(method, handler); } else { //所有方法执行实例,添加到分发器中 methodToHandler.put(method, nameToHandler.get(Feign.configKey(target.type(), method))); } } //创建目标方法调用执行实例,对目标接口所有方法的执行都会通过该实例发出调用 InvocationHandler handler = factory.create(target, methodToHandler); //创建目标接口的代理实例 T proxy = (T) Proxy.newProxyInstance(target.type().getClassLoader(), new Class<?>[] {target.type()}, handler); for (DefaultMethodHandler defaultMethodHandler : defaultMethodHandlers) { defaultMethodHandler.bindTo(proxy); } return proxy; }
在解析方法的元数据期间,我们可以自定义方法参数的处理器 (实现 AnnotatedParameterProcessor 接口),指定请求参数的位置。在构建请求模板的时候,可以通过 QueryMapEncoder 实现实例完成参数的解析、转换。
至此,通过JDK的动态代理机制,返回目标接口的代理实例。
3、客户端请求执行过程
feign.ReflectiveFeign.FeignInvocationHandler
@Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { //忽略部分代码逻辑 //通过分发器调用对应的方法执行实例 return dispatch.get(method).invoke(args); }
feign.SynchronousMethodHandler
@Override public Object invoke(Object[] argv) throws Throwable { //通过模板构建器,创建请求模板实例 RequestTemplate template = buildTemplateFromArgs.create(argv); Options options = findOptions(argv); Retryer retryer = this.retryer.clone(); while (true) { try { //执行请求和解码 return executeAndDecode(template, options); } catch (RetryableException e) {} } } Object executeAndDecode(RequestTemplate template, Options options) throws Throwable { //忽略部分代码逻辑... //应用请求拦截器(RequestInterceptor),创建请求实例 Request request = targetRequest(template); Response response; try { response = client.execute(request, options); } catch (IOException e) { throw errorExecuting(request, e); } boolean shouldClose = true; try { if (Response.class == metadata.returnType()) { if (response.body() == null) { return response; } if (response.body().length() == null || response.body().length() > MAX_RESPONSE_BUFFER_SIZE) { shouldClose = false; return response; } // Ensure the response body is disconnected byte[] bodyData = Util.toByteArray(response.body().asInputStream()); return response.toBuilder().body(bodyData).build(); } if (response.status() >= 200 && response.status() < 300) { if (void.class == metadata.returnType()) { return null; } else { Object result = decode(response); shouldClose = closeAfterDecode; return result; } } else if (decode404 && response.status() == 404 && void.class != metadata.returnType()) { Object result = decode(response); shouldClose = closeAfterDecode; return result; } else { throw errorDecoder.decode(metadata.configKey(), response); } } catch (IOException e) { throw errorReading(request, response, e); } finally { if (shouldClose) { ensureClosed(response.body()); } } }
在构造请求实例期间,可以通过实现 RequestInterceptor 接口,并结合配置文件(可参照FeignClientProperties配置属性)指定客户端实例的请求拦截器。
通过上述请求模板的构建,生成请求实例后,进入请求调用阶段。
@Override public Response execute(Request request, Request.Options options) throws IOException { try { URI asUri = URI.create(request.url()); String clientName = asUri.getHost(); URI uriWithoutHost = cleanUrl(request.url(), clientName); FeignLoadBalancer.RibbonRequest ribbonRequest = new FeignLoadBalancer.RibbonRequest(this.delegate, request, uriWithoutHost); IClientConfig requestConfig = getClientConfig(options, clientName); return lbClient(clientName) .executeWithLoadBalancer(ribbonRequest, requestConfig).toResponse(); } catch (ClientException e) { throw new RuntimeException(e); } }
4、客户端请求重试机制
通过 FeignClientProperties 可以配置重试,重试类在 FeignClientFactoryBean 中实例化,实例化的逻辑是 configureFeign 方法中,先从容器中查找 Retryer 中的 bean,如果有则填充到 Feign.Builder,再从 FeignClientProperties 中查找配置,如果有则再次填充 Feign.Builder,简单的讲就是覆盖逻辑。
feign真正执行重试请求的逻辑在代理类 SynchronousMethodHandler 中,该类是JDK动态代理后,最终执行的方法处理器。
feign.SynchronousMethodHandler
public Object invoke(Object[] argv) throws Throwable { RequestTemplate template = buildTemplateFromArgs.create(argv); Options options = findOptions(argv); Retryer retryer = this.retryer.clone(); //循环,若调用无异常则立即返回;有异常,进入重试,计算重试时间间隔,通过线程休眠进行等待重新调用 while (true) { try { return executeAndDecode(template, options); } catch (RetryableException e) { try { //这里重试,无异常则代表可以继续重试 retryer.continueOrPropagate(e); } catch (RetryableException th) { Throwable cause = th.getCause(); if (propagationPolicy == UNWRAP && cause != null) { throw cause; } else { throw th; } } if (logLevel != Logger.Level.NONE) { logger.logRetry(metadata.configKey(), logLevel); } continue; } } }
从上述流程看出,若调用异常,就会通过 Retryer 重试处理器进入重试流程。
原文转发链接:https://www.cnblogs.com/crazymakercircle/p/11965726.html