• 多层感知机识别手写体数字


    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    """
     @date 2018/08/09 20:08:45
    """
    
    import sys
    import numpy as np
    import sklearn.preprocessing as prep
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    sess = tf.InteractiveSession()
    
    in_units = 784
    h1_units = 300
    w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))
    b1 = tf.Variable(tf.zeros([h1_units]))
    w2 = tf.Variable(tf.zeros([h1_units, 10]))
    b2 = tf.Variable(tf.zeros([10]))
    
    x = tf.placeholder(tf.float32, [None, in_units])
    keep_prob = tf.placeholder(tf.float32)
    
    hidden1 = tf.nn.relu(tf.matmul(x, w1) + b1)
    hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
    y = tf.nn.softmax(tf.matmul(hidden1_drop, w2) + b2)
    y_ = tf.placeholder(tf.float32, [None, 10])
    cross_entropy = tf.reduce_mean(- tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    train_step = tf.train.AdagradOptimizer(0.3).minimize(cross_entropy)
    
    tf.global_variables_initializer().run()
    for i in range(3000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        train_step.run({x: batch_xs, y_: batch_ys, keep_prob: 0.75})
    
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    
    if __name__ == '__main__':
        pass
    View Code

  • 相关阅读:
    VC++数据类型最佳解释
    C++类型转换
    内核态和用户态
    AZMan使用经验点滴
    解析#pragma指令(转)
    htc使用心得
    在VS.net 2008中利用ATL来创建COM关于接口文件的引用变动
    移植Reporting Service报表到项目报表
    const常量、指向常量的指针和常量指针(转)
    extern用法详解(转)
  • 原文地址:https://www.cnblogs.com/yuanzhenliu/p/9467822.html
Copyright © 2020-2023  润新知