#!/usr/bin/env python # -*- coding: utf-8 -*- """ @date 2018/08/09 20:08:45 """ import sys import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def xavier_init(fan_in, fan_out, constant=1): """ Briefs: xavier_init """ low = - constant * np.sqrt(6.0 / (fan_in + fan_out)) high = constant * np.sqrt(6.0 / (fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval = low, maxval = high, dtype = tf.float32) class AdditiveGaussianNoiseAutoencoder(object): """ Briefs:自编码器 """ def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,optimizer=tf.train.AdamOptimizer(), scale=0.1): """ Briefs: init """ self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.scale = tf.placeholder(tf.float32) self.training_scale = scale network_weights = self._initialize_weights() self.weights = network_weights self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): """ Briefs: _initialize weights """ all_weights = dict() all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden)) all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32)) all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32)) all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32)) return all_weights def partial_fit(self, X): """ Briefs: partial fit """ cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x: X, self.scale: self.training_scale}) return cost def calc_total_cost(self, X): """ Briefs: calc total cost """ return self.sess.run(self.cost, feed_dict = {self.x: X, self.scale: self.training_scale}) def transform(self, X): """ Briefs: transform """ return self.sess.run(self.hidden, feed_dict = {self.x: X, self.scale: self.training_scale}) def generate(self, hidden=None): """ Briefs: generate """ if hidden is None: hidden = np.random.normal(size = self.weights['b1']) return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden}) def reconstruct(self, X): """ Briefs: reconstruction """ return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.scale: self.training_scale}) def getWeights(self): """ Briefs: get weigths """ return self.sess.run(self.weights['w1']) def getBiases(self): """ Briefs: get biases """ return self.sess.run(self.weights['b1']) mnist = input_data.read_data_sets('MNIST_data', one_hot = True) def standard_scale(X_train, X_test): """ Briefs: standard scale 标准化处理:先减去均值再除以标准差 """ preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test def get_random_block_from_data(data, batch_size): """ Briefs: get random block from data """ start_index = np.random.randint(0, len(data) - batch_size) return data[start_index:(start_index + batch_size)] X_train, X_test = standard_scale(mnist.train.images, mnist.test.images) n_samples = int(mnist.train.num_examples) training_epochs = 20 batch_size = 128 display_step = 1 autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784, n_hidden = 200, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(learning_rate = 0.001), scale = 0.01) for epoch in range(training_epochs): avg_cost = 0 total_batch = int(n_samples / batch_size) for i in range(total_batch): batch_xs = get_random_block_from_data(X_train, batch_size) cost = autoencoder.partial_fit(batch_xs) avg_cost += cost / n_samples * batch_size if epoch % display_step== 0: print("Epoch:", "%04d" % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) print("Total cost: " + str(autoencoder.calc_total_cost(X_test))) if __name__ == '__main__': pass