• MapReduce——简单数据去重


      MapReduce采用的是“分而治之”的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个从节点共同完成,然后通过整合各个节点的中间结果,得到最终结果。简单来说,MapReduce就是”任务的分解与结果的汇总“。MapReduce可以把其处理过程高度抽象为Map与Reduce两个部分来进行阐述,其中Map部分负责把任务分解成多个子任务,Reduce部分负责把分解后多个子任务的处理结果汇总起来。下面举一个简单的例子:

      现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1,包含:买家id,商品id,收藏日期这三个字段,数据以“ ”分割,样本数据及格式如下:

     要求编写MapReduce程序,统计每个买家收藏商品数量。

    package org.apache.hadoop.examples;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class WordCount2 {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            Job job = Job.getInstance();
            job.setJobName("WordCount");
            job.setJarByClass(WordCount2.class);
            job.setMapperClass(doMapper.class);
            job.setReducerClass(doReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            Path in = new Path("hdfs://localhost:9000/mymapreduce1/in/buyer_favorite1");
            Path out = new Path("hdfs://localhost:9000/mymapreduce1/out");
            FileInputFormat.addInputPath(job, in);
            FileOutputFormat.setOutputPath(job, out);
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    
        public static class doMapper extends Mapper<Object, Text, Text, IntWritable> {
            public static final IntWritable one = new IntWritable(1);
            public static Text word = new Text();
    
            @Override
            protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
                StringTokenizer tokenizer = new StringTokenizer(value.toString(), " ");
                word.set(tokenizer.nextToken());
                context.write(word, one);
            }
        }
    
        public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
    
            @Override
            protected void reduce(Text key, Iterable<IntWritable> values, Context context)
                    throws IOException, InterruptedException {
                int sum = 0;
                for (IntWritable value : values) {
                    sum += value.get();
                }
                result.set(sum);
                context.write(key, result);
            }
        }
    }
  • 相关阅读:
    MVC常用跳转页面的方法
    简单工厂模式
    MySQL 查询昨天中午12点到今天中午12点的数据
    Windows安装yarn
    MapStruct
    CSS 3D
    05-序列化器ModelSerializer
    django基础之Django中间件
    04-序列化器Serializer
    03-四大基本模块
  • 原文地址:https://www.cnblogs.com/yuanxiaochou/p/11767042.html
Copyright © 2020-2023  润新知