• POJ 1442 -- Black Box(大小堆,优先队列)


    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions: 

    ADD (x): put element x into Black Box; 
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending. 

    Let us examine a possible sequence of 11 transactions: 

    Example 1 

    N Transaction i Black Box contents after transaction Answer
    (elements are arranged by non-descending)
    1 ADD(3) 0 3
    2 GET 1 3 3
    3 ADD(1) 1 1, 3
    4 GET 2 1, 3 3
    5 ADD(-4) 2 -4, 1, 3
    6 ADD(2) 2 -4, 1, 2, 3
    7 ADD(8) 2 -4, 1, 2, 3, 8
    8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
    9 GET 3 -1000, -4, 1, 2, 3, 8 1
    10 GET 4 -1000, -4, 1, 2, 3, 8 2
    11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type. 


    Let us describe the sequence of transactions by two integer arrays: 


    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2). 

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6). 

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence. 


    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2



    题解: 用最大堆保存每次取出的最小数,然后用当前最小堆队列的最小值和最大堆的比较,如果大于最大堆需要两个值互换, 应该最大堆的top保存的是第k-1小的数,如果最小堆有比它小的,那么最大堆的top应变成第k小的数。

    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<cstring>
    using namespace std;
    
    const int maxn = 30100;
    
    int num[maxn];
    priority_queue<int> big;
    priority_queue<int,vector<int>,greater<int> > small;
    
    int main(){
        
        int n,m,op;
        
        scanf("%d%d",&n,&m);
        
        for(int i=0;i<n;i++){
            scanf("%d",&num[i]);
        }
        int cnt = 0;
        for(int i=0;i<m;i++){
            scanf("%d",&op);
            
            while(cnt<op){
                small.push(num[cnt]);
            
                if(!big.empty()&&big.top()>small.top()){
                    int tmp1 = big.top();
                    int tmp2 = small.top();
                    big.pop();
                    small.pop();
                    big.push(tmp2);
                    small.push(tmp1);
                }
                cnt++;
            }
            printf("%d
    ",small.top());
            big.push(small.top());
            small.pop();                
        }
        
        return 0;
    }
  • 相关阅读:
    DeepIn系统使用和相关软件安装
    在JDK11中生成JRE11的方法
    IIS 7 中设置文件上传大小的方法
    在服务器上发布MVC5的应用
    安装了多个Oracle11g的客户端,哪个客户端的tnsnames.ora会起作用?
    配置putty或SecureCRT防止SSH连接中断
    借助FRP反向代理实现内网穿透
    你不知道的hostname命令
    Perl脚本通过Expect登陆多台设备批量执行命令并Log
    Linux内核参数配置
  • 原文地址:https://www.cnblogs.com/yuanshixingdan/p/6080940.html
Copyright © 2020-2023  润新知