• lightoj-1098


    1098 - A New Function
    PDF (English) Statistics Forum
    Time Limit: 3 second(s) Memory Limit: 32 MB
    We all know that any integer number n is divisible by 1 and n. That is why these two numbers are not the actual divisors of any numbers. The function SOD(n) (sum of divisors) is defined as the summation of all the actual divisors of an integer number n. For example,

    SOD(24) = 2+3+4+6+8+12 = 35.

    The function CSOD(n) (cumulative SOD) of an integer n, is defined as below:


    Given the value of n, your job is to find the value of CSOD(n).

    Input
    Input starts with an integer T (≤ 1000), denoting the number of test cases.

    Each case contains an integer n (0 ≤ n ≤ 2 * 109).

    Output
    For each case, print the case number and the result. You may assume that each output will fit into a 64 bit signed integer.

    Sample Input
    Output for Sample Input
    3
    2
    100
    200000000
    Case 1: 0
    Case 2: 3150
    Case 3: 12898681201837053

    解题思路:

    通过一个因子,求出与此因子相对应的其他因子,求和;

    例如n=20的时候,当因子为2时,对应的 2(4),3(6),4(8),5(10),6(12),7(14),8(16),9(18),10(10)  

    当为3时,对应的为2(6),3(9),4(12),5(15),6(18)

    此时要计算时要注意避免 2和3时之间有重复的情况。

    #include<iostream>
    #include<cmath>
    #include<cstdio>
    using namespace std;
    
    typedef long long ll;
    int T;
    ll sum,n,p,q,m;
    
    int main(){
         
        scanf("%d",&T);
        for(int t=1;t<=T;t++){
            sum = 0;
            scanf("%lld",&n);
            
            m = (ll)sqrt(n);
            for(ll i=2;i<=m;i++){
                sum += i;
                // p,q 变量的增加是为了避免重复情况的产生 
                p = i+1;
                q = n/i;
                if(q<q) continue;
                sum += (q-p+1)*i;
                sum += (q-p+1)*(q+p)/2;
                
            }
            printf("Case %d: %lld
    ",t,sum);
            
            
        }
        
        return 0;
    }
    View Code
  • 相关阅读:
    【9018:2221】[伪模板]可持久化线段树
    【9018:2208】可持久化线段树2
    【9018:2207】可持久化线段树1
    【POJ2187】Beauty Contest
    2017/11/22模拟赛
    2017/11/3模拟赛
    [AtCoder 2702]Fountain Walk
    [AtCoder3856]Ice Rink Game
    20170910模拟赛
    20170906模拟赛
  • 原文地址:https://www.cnblogs.com/yuanshixingdan/p/5539756.html
Copyright © 2020-2023  润新知