• 基于TensorFlow进行TensorBoard可视化


      1 # -*- coding: utf-8 -*-
      2 """
      3 Created on Thu Nov  1 17:51:28 2018
      4 
      5 @author: zhen
      6 """
      7 
      8 import tensorflow as tf
      9 from tensorflow.examples.tutorials.mnist import input_data
     10 
     11 max_steps = 1000
     12 learning_rate = 0.001
     13 dropout = 0.9
     14 data_dir = 'C:/Users/zhen/MNIST_data_bak/'
     15 log_dir = 'C:/Users/zhen/MNIST_log_bak/'
     16 
     17 mnist = input_data.read_data_sets(data_dir, one_hot=True) # 加载数据,把数据转换成one_hot编码
     18 sess = tf.InteractiveSession() # 创建内置sess
     19 
     20 with tf.name_scope('input'):
     21     x = tf.placeholder(tf.float32, [None, 784], name='x-inpupt')
     22     y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
     23     
     24 with tf.name_scope("input_reshape"):
     25     image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
     26     tf.summary.image('input', image_shaped_input, 10) # 输出包含图像的summary,该图像有四维张量构建,用于可视化
     27     
     28 # 定义神经网络的初始化方法
     29 def weight_variable(shape):
     30     initial = tf.truncated_normal(shape, stddev=0.1) #从截断的正态分布中输出随机值,类似tf.random_normal从正态分布中输出随机值
     31     return tf.Variable(initial)
     32 
     33 def bias_variable(shape):
     34     initial = tf.constant(0.1, shape=shape)
     35     return tf.Variable(initial)
     36 
     37 # 定义Variable变量的数据汇总函数
     38 def variable_summaries(var):
     39     with tf.name_scope('summaries'):
     40         mean = tf.reduce_mean(var) # 求平均值
     41         tf.summary.scalar('mean', mean) # 输出一个含有标量值的summary protocal buffer,用于可视化
     42         with tf.name_scope('stddev'):
     43             stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
     44         tf.summary.scalar('stddev', stddev)
     45         tf.summary.scalar('max', tf.reduce_max(var))
     46         tf.summary.scalar('min', tf.reduce_min(var))
     47         tf.summary.histogram('histogram', var) # 用于显示直方图信息
     48         
     49 # 创建MLP多层神经网络
     50 def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
     51     with tf.name_scope(layer_name):
     52         with tf.name_scope('weights'):
     53             weights = weight_variable([input_dim, output_dim])
     54             variable_summaries(weights)
     55         with tf.name_scope('biases'):
     56             biases = bias_variable([output_dim])
     57             variable_summaries(biases)
     58         with tf.name_scope('Wx_plus_b'):
     59             preactivate = tf.matmul(input_tensor, weights) + biases # 矩阵乘
     60             tf.summary.histogram('pre_activations', preactivate)
     61         activations = act(preactivate, name='activation') # 激活函数relu
     62         tf.summary.histogram('activations', activations)
     63         return activations
     64     
     65 hidden1 = nn_layer(x, 784, 500, 'layer1')
     66 
     67 with tf.name_scope('dropout'):
     68     keep_prob = tf.placeholder(tf.float32)
     69     tf.summary.scalar('dropout_keep_probability', keep_prob)
     70     dropped  = tf.nn.dropout(hidden1, keep_prob) # 训练过程中随机舍弃部分神经元,为了防止或减轻过拟合
     71     
     72 y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
     73 
     74 with tf.name_scope('scross_entropy'):
     75     diff = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_) # 求交叉熵
     76     with tf.name_scope('total'):
     77         cross_entropy  = tf.reduce_mean(diff)
     78 tf.summary.scalar('cross_entropy', cross_entropy)
     79 
     80 with tf.name_scope('train'):
     81     train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy) #Adam优化算法,全局最优,引入了二次方梯度矫正
     82 with tf.name_scope('accuracy'):
     83     with tf.name_scope('accuracy'):
     84         correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
     85     with tf.name_scope('accuracy'):
     86         accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
     87 
     88 tf.summary.scalar('accuracy', accuracy)
     89 
     90 merged = tf.summary.merge_all() # 整合之前定义的所有summary,在此处才开始执行,summary为延迟加载
     91 train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
     92 test_writer = tf.summary.FileWriter(log_dir + '/test') # 可视化数据存储在日志文件中
     93 tf.global_variables_initializer().run()
     94 
     95 def feed_dict(train):
     96     if train:
     97         xs, ys = mnist.train.next_batch(100)
     98         k = dropout
     99     else:
    100         xs, ys = mnist.test.images, mnist.test.labels
    101         k = 1.0
    102     return {x:xs, y_:ys, keep_prob:k}
    103 
    104 saver = tf.train.Saver()
    105 for i in range(max_steps):
    106     if i % 100 == 0:
    107         summary, acc = sess.run([merged, accuracy], feed_dict(False))
    108         test_writer.add_summary(summary, i)
    109         print('Accuray at step %s:%s' % (i, acc))
    110     else:
    111         if i % 100 == 99:
    112             run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # 定义TensorFlow运行选项
    113             run_metadata = tf.RunMetadata() # 定义TensorFlow运行元信息,记录训练运行时间及内存占用等信息
    114             summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
    115             train_writer.add_run_metadata(run_metadata, 'stp%03d' % i)
    116             train_writer.add_summary(summary, 1)
    117             saver.save(sess, log_dir + 'model.ckpt', i)
    118         else:
    119             summary, _ = sess.run([merged,train_step], feed_dict=feed_dict(True))
    120             train_writer.add_summary(summary, i)
    121             
    122 train_writer.close()
    123 test_writer.close()
    124       
    125     

      程序执行完成后,在dos命令窗口或linux窗口运行命令,参数logdir是你程序保存log日志设置的地址。

    效果如下:

    结果:

       

      

       一层神经网络:

      

      二层神经网络:

      

      神经网络计算图:

      

      神经元输出的分布:

        

      数据分布直方图:
          

      数据可视化:

        

  • 相关阅读:
    react redux 使用
    github 退出和别人共同开发的仓库
    在react package.json中配置代理解决跨域
    禁止浏览器sources下webpack文件 显示源码
    redux connect 装饰器配置和安装
    Odoo 在action的domain和context中使用self.env
    odoo 字段后面添加button按钮,页签tree再加group显示字段
    Odoo -- 开发者模式创建的群组、动作没有xml id怎么办
    Mac必备神器Homebrew mac下镜像飞速安装Homebrew教程
    Vue -- keyup、watch、computed、nrm的安装
  • 原文地址:https://www.cnblogs.com/yszd/p/9910456.html
Copyright © 2020-2023  润新知