You have r red, g green and b blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number t of tables can be decorated if we know number of balloons of each color?
Your task is to write a program that for given values r, g and b will find the maximum number t of tables, that can be decorated in the required manner.
The single line contains three integers r, g and b (0 ≤ r, g, b ≤ 2·109) — the number of red, green and blue baloons respectively. The numbers are separated by exactly one space.
Print a single integer t — the maximum number of tables that can be decorated in the required manner.
In the first sample you can decorate the tables with the following balloon sets: "rgg", "gbb", "brr", "rrg", where "r", "g" and "b" represent the red, green and blue balls, respectively.
从网上找到两种代码,算法的核心思路是一样的。有待仔细研究一下,我想过要用该路的问题,但好像又行不通。
最后演变成了规律性的解。
#include <stdio.h> #include <iostream> #include <cstring> #include <algorithm> #include <cmath> using namespace std; long long r; long long g,b,ans; int main() { scanf("%I64d%I64d%I64d",&r,&g,&b); ans=min(min(min((r+g+b)/3,r+g),r+b),b+g); printf("%I64d ",ans); return 0; }
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; #define INF 0x7fffffff long long a[4], t; int main() { #ifdef sxk freopen("in.txt","r",stdin); #endif int n; while(scanf("%lld%lld%lld",&a[0], &a[1], &a[2])!=EOF) { sort(a, a+3); if(a[2] > 2*(a[0]+a[1])) t = a[0] + a[1]; else t = (a[0]+a[1]+a[2])/3; printf("%lld ", t); } return 0; }