• Fermat’s Chirstmas Theorem (素数打表的)


                                                                             Fermat’s Chirstmas Theorem
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

    Description

    In a letter dated December 25, 1640; the great mathematician Pierre de Fermat wrote to Marin Mersenne that he just proved that an odd prime p is expressible as p = a2 + b2 if and only if p is expressible as p = 4c + 1. As usual, Fermat didn’t include the proof, and as far as we know, never
    wrote it down. It wasn’t until 100 years later that no one other than Euler proved this theorem.

    Input

    Your program will be tested on one or more test cases. Each test case is specified on a separate input line that specifies two integers L, U where L ≤ U < 1, 000, 000
    The last line of the input file includes a dummy test case with both L = U = −1.

    Output

    L U x y
    where L and U are as specified in the input. x is the total number of primes within the interval [L, U ] (inclusive,) and y is the total number of primes (also within [L, U ]) that can be expressed as a sum of squares.

    Sample Input

    10 20
    11 19
    100 1000
    -1 -1
    

    Sample Output

    10 20 4 2
    11 19 4 2
    100 1000 143 69
    #include<stdio.h>  
    #include<string.h>  
    
    #define N 1000005
    
    int prime[100005];  
    int flag[1000005];  
    int e;
      
    void getP()  // 素数打表,找出素数存栈  
    {  
    	int i, j;  
    	e = 0;  
    	memset(flag, 0, sizeof(flag) ); //标记初始化
    	
    	for ( i=2; i<N; i++)  
    	{  
    		if ( flag[i]==0 ) 
    		{
    			prime[e++] = i; //进栈  
    		}
    		for ( j=0; j<e && i*prime[j]<N; j++ )  
    		{  
    			flag[ i * prime[j] ] = 1;  
    		}  
    	}  
    }  
    
    int main()  
    {  
    	int l,u,x,y;  
    
    	getP(); 
    	int i;
    	while(scanf("%d %d",&l,&u))  
    	{  
    	  
    		if(l==-1 && u==-1)  
                break;  
    		x=0;  
    		y=0;
    		for( i=0; i<e; i++)  
    		{  
    			if(prime[i]>=l && prime[i]<=u )  
    			{  
    				x++;  
    				if(prime[i]%4==1) 
    				{
                        y++;  
    				}
    			}  
    			if(prime[i]>u)  
                    break;  
    		}  
    		if(l<=2 && u>=2)
    		{
    			y++;
    		}
    		printf("%d %d %d %d
    ",l, u, x, y );  
    	}  
    	return 0;  
    }  
    
  • 相关阅读:
    Redis 安全
    Redis 数据备份与恢复
    Redis 服务器
    Redis 连接
    Redis 脚本
    Linux中使用netstat命令的基本操作,排查端口号的占用情况
    ElasticSearch 常用查询语句
    GO代码风格指南 Uber Go (转载)
    coding 注意事项(总结中)
    Byte字节
  • 原文地址:https://www.cnblogs.com/yspworld/p/3900513.html
Copyright © 2020-2023  润新知