• POJ 1068 Parencodings (类似括号的处理问题)


                                                                                                    Parencodings
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 19550   Accepted: 11804

    Description

    Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
    q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
    q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).

    Following is an example of the above encodings:

    S (((()()())))
    P-sequence 4 5 6666
    W-sequence 1 1 1456

    Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.

    Input

    The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

    Output

    The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

    Sample Input

    2
    6
    4 5 6 6 6 6
    9 
    4 6 6 6 6 8 9 9 9
    

    Sample Output

    1 1 1 4 5 6
    1 1 2 4 5 1 1 3 9


    题目分析:
    poj的一道英文题目,读了好久啊还借助了别人的翻译指导。此题多组处理数据,每组输入n个数,每个a[i]代表当前对应的右括号前面共有多少个左括号。
    比如:n=6, 4 5 6 6 6 6 。 对应第一个右括号前有4个左括号,第二个右括号前有5个左括号,不过千万不要落下第一个右括号啊,以此类推下去。。。。。。
    现在要求输出另一个数组,数组元素为当前右括号包含的括号总数!
    比如:(()())
    第一个右括号只包含自己,故为 1;
    第二个右括号也只包含自己, 故为 1;
    第三个右括号包含前面两个括号,再加上自己,故为 3.
    所以应输出:1 1 3 ;

    算法思路:根据n个数的数组模拟出原来的括号字符串,而我用的整形数组代替的,就是用1代表'(',用2代表‘)’,然后对这个整形数组处理。
    样例解析:
    (((()()()))))
    1 1 112 12 12 2 2 2 2
    标记数组:0 0 000 00 00 0 0 0 0
    第一次处理:0 0 011..............等

    标记数组遇到"2"则变成“1”。此时找到2了,则往2的前面去找1,也就是所谓的左括号,然后将找到的左括号标记为1,接下来将
    该输出的数存入输出数组,计算公式为:(i-j+1)/2; i为右括号的下标,j为找到的匹配的左括号的下标。

    Accepted的代码如下:

    #include <stdio.h>
    #include <string.h>
    
    int a[30];
    int b[100], e;
    int c[100];
    int d[100], dd;
    
    int main()
    {
        int t, n;
        int i, j, k;
    	
        scanf("%d", &t) ;
        while(t--)
        {
            e = 0;
            scanf("%d", &n);
            scanf("%d", &a[0] );
    		
            for(j=0; j<a[0]; j++)
            {
                b[e++] = 1;
            }
            b[e++]=2;
    		
            for(i=1; i<n; i++)
            {
                scanf("%d", &a[i] );
                for(j=0; j<(a[i]-a[i-1]); j++)
                {
                    b[e++] = 1;
                }
                b[e++] = 2;
            }
            memset(c,0, sizeof(c));
            dd = 0;
            for(i=0; i<e; i++ )
            {
                if( b[i]==2 && c[i]==0 )
                {
                    c[i]=1;
                    for(j=i-1; j>=0; j--)
                    {
                        if( b[j]==1 && c[j]==0 )
                        {
                            c[j]=1;
                            d[dd++] = (i-j+1)/2 ;
                            break;
                        }
                    }
                }
            }
            for(k=0; k<dd; k++)
            {
                printf("%d%c", d[k],k==dd-1?'
    ':' ' );
            }
        }
        return 0;
    }
    
    
    
    


  • 相关阅读:
    题解-CmdOI2019 口头禅
    题解-NOI2003 智破连环阵
    题解-CF1282E The Cake Is a Lie
    CF1288F Red-Blue Graph
    题解-洛谷P4229 某位歌姬的故事
    莫比乌斯反演
    [HNOI2008]越狱(bzoj1008)(组合数学+正难则反)
    [FJOI2007]轮状病毒(bzoj1002)(递推+高精度)
    矩阵快速幂
    高斯消元
  • 原文地址:https://www.cnblogs.com/yspworld/p/3871859.html
Copyright © 2020-2023  润新知