• java实现-图的相关操作


    import java.util.LinkedList;
     
    public class Graph {
        private int vertexSize;//顶点的数量
        private int[] vertexs;//顶点数组
        private int[][] matrix;//矩阵
        private boolean[] isVisited;//是否访问过
        private static final int MAX_WEIGHT = 1000;
     
        public Graph(int vertexSize){
            this.vertexSize = vertexSize;
            matrix = new int[vertexSize][vertexSize];
            vertexs = new int[vertexSize];
            for(int i = 0;i < vertexSize;i++){
                vertexs[i] = i;
            }
            isVisited = new boolean[vertexSize];
        }
     
        public int getVertexSize() {
            return vertexSize;
        }
     
        public void setVertexSize(int vertexSize) {
            this.vertexSize = vertexSize;
        }
     
        public int[] getVertexs() {
            return vertexs;
        }
     
        public void setVertexs(int[] vertexs) {
            this.vertexs = vertexs;
        }
     
        public int[][] getMatrix() {
            return matrix;
        }
     
        public void setMatrix(int[][] matrix) {
            this.matrix = matrix;
        }
     
        //获取某个顶点的出度
        public int getOutDegree(int index){
            int[] arr = matrix[index];
            int degree = 0;
            for(int i = 0;i < arr.length;i++){
                if(arr[i] !=0 && arr[i] < MAX_WEIGHT){
                    degree++;
                }
            }
            return degree;
        }
     
        //获取两个顶点之间的权值
        public int getWeight(int v1,int v2){
            return matrix[v1][v2] == 0 ? 0 : (matrix[v1][v2] == MAX_WEIGHT ? -1 : matrix[v1][v2]);
        }
     
        //深度优先遍历
        private void depthFirstSearch(int i){
            isVisited[i] = true;
            int w = getFirstNeighor(i);
            while(w != -1){
                if (!isVisited[w]){//需要遍历该顶点
                    System.out.println("访问到了 " + w + "顶点");
                    depthFirstSearch(w);
                }
                w = getNextNeighor(i,w);//第一个相对于w的邻接点
     
            }
        }
     
        //对外提供深度优先遍历
        public void depthFirstSearch(){
            isVisited = new boolean[vertexSize];
            for(int i = 0;i < vertexSize;i++){
                if(!isVisited[i]){
                    System.out.println("访问到了 " + i + "顶点");
                    depthFirstSearch(i);
                }
            }
            isVisited = new boolean[vertexSize];
        }
     
        //广度优先遍历(使用到了队列)
        public void broadFirstSearch(){
            isVisited = new boolean[vertexSize];
            for(int i = 0;i < vertexSize;i++){
                if(!isVisited[i]){
                    broadFirstSearch(i);
                }
            }
            isVisited = new boolean[vertexSize];
        }
     
        private void broadFirstSearch(int i){
            int u;//获取队列的头结点
            int w;//获取第一个邻接点
            LinkedList<Integer> queue = new LinkedList<>();
            System.out.println("访问到了 " + i + "结点");
            isVisited[i] = true;
            queue.add(i);
            while(!queue.isEmpty()){
                u = (Integer)(queue.removeFirst()).intValue();
                w = getFirstNeighor(u);
                while(w != -1){
                    if(!isVisited[w]) {
                        System.out.println("访问到了 " + w + "结点");
                        isVisited[w] = true;
                        queue.add(w);
                    }
                    w = getNextNeighor(u,w);
                }
     
            }
        }
     
        //获取某个结点的第一个邻接点
        public int getFirstNeighor(int index){
            for(int i = 0;i < vertexSize;i++){
                if(matrix[index][i] > 0 && matrix[index][i] < MAX_WEIGHT){
                    return i;
                }
            }
            return -1;
        }
     
        //根据前一个邻接点的下标来获取下一个邻接点(就是根据相对于第一个邻接点获取下一个邻接点)
        /*
        *  @param v1表示要找的顶点
        *  @param v2表示该顶点相对于哪个邻接点去获取下一个邻接点
        * **/
        public int getNextNeighor(int v1,int v2){
            for(int i = v2 + 1;i < vertexSize;i++){
                if(matrix[v1][i] > 0 && matrix[v1][i] < MAX_WEIGHT){
                    return i;
                }
            }
            return -1;
        }
     
     
        //普里母算法
        public void prim(){
            int[] lowcost = new int[vertexSize];    //最小代价顶点权值的数组,为0表示已经获取到了最小的权值
            int[] adjvex = new int[vertexSize];     //放顶点权值
            int min = 0;//最小值
            int minId = 0;//最小的下标
            int sum = 0;    //总和
            for(int i = 1;i < vertexSize;i++){
                lowcost[i] = matrix[0][i];
            }
     
            for(int i = 1;i < vertexSize;i++){
                min = MAX_WEIGHT;
                minId = 0;
                for(int j = 1;j < vertexSize;j++){
                    if(lowcost[j] < min && lowcost[j] > 0){
                        min = lowcost[j];
                        minId = j;
                    }
                }
    //            for(int a = 0;a < vertexSize;a++){
    //                System.out.print(adjvex[a] + " ");
    //            }
                System.out.println("顶点为:" + adjvex[minId] + ",权值为:" + min + "最小值的下标为:" + minId);
     
                sum += min;
                lowcost[minId] = 0;
                for(int j = 1;j < vertexSize;j++){
                    if(lowcost[j] != 0 && matrix[minId][j] < lowcost[j]){
                        lowcost[j] = matrix[minId][j];
                        adjvex[j] = minId;
                    }
                }
            }
            System.out.println("最小生成树的权值和为:" + sum);
     
        }
     
     
     
        public static void main(String[] args){
            Graph graph = new Graph(9);
            int[] a1 = new int[]{0,10,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,11,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT};
            int[] a2 = new int[]{10,0,18,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,16,MAX_WEIGHT,12};
            int[] a3 = new int[]{MAX_WEIGHT,MAX_WEIGHT,0,22,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,8};
            int[] a4 = new int[]{MAX_WEIGHT,MAX_WEIGHT,22,0,20,MAX_WEIGHT,24,16,21};
            int[] a5 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,20,0,26,MAX_WEIGHT,7,MAX_WEIGHT};
            int[] a6 = new int[]{11,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,26,0,17,MAX_WEIGHT,MAX_WEIGHT};
            int[] a7 = new int[]{MAX_WEIGHT,16,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,17,0,19,MAX_WEIGHT};
            int[] a8 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,16,7,MAX_WEIGHT,19,0,MAX_WEIGHT};
            int[] a9 = new int[]{MAX_WEIGHT,12,8,21,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,0};
            graph.matrix[0] = a1;
            graph.matrix[1] = a2;
            graph.matrix[2] = a3;
            graph.matrix[3] = a4;
            graph.matrix[4] = a5;
            graph.matrix[5] = a6;
            graph.matrix[6] = a7;
            graph.matrix[7] = a8;
            graph.matrix[8] = a9;
     
    //        System.out.println("出度为:" + graph.getOutDegree(4));
    //        System.out.println("权值:" + graph.getWeight(0,4));
        }
    }

    ————————————————
    版权声明:本文为CSDN博主「StrongHYQ」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/StrongHYQ/article/details/81324928

  • 相关阅读:
    洛谷P1948 [USACO08JAN]电话线Telephone Lines
    bzoj4152 [AMPPZ2014]The Captain
    洛谷P1396 营救
    洛谷P1821 [USACO07FEB]银牛派对Silver Cow Party
    洛谷P2002 消息扩散
    Uoj308【UNR #2】UOJ拯救计划
    洛谷P1937 [USACO10MAR]仓配置Barn Allocation
    洛谷P3740 [HAOI2014]贴海报
    洛谷P2344 奶牛抗议
    Android(java)学习笔记124:利用Service在后台播放背景音乐
  • 原文地址:https://www.cnblogs.com/yrjns/p/12453729.html
Copyright © 2020-2023  润新知