题目:
Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5
and edges = [[0, 1], [0, 2], [0, 3], [1, 4]]
, return true
.
Given n = 5
and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]]
, return false
.
Hint:
- Given
n = 5
andedges = [[0, 1], [1, 2], [3, 4]]
, what should your return? Is this case a valid tree? Show More Hint
Note: you can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
链接: http://leetcode.com/problems/graph-valid-tree/
题解:
验证输入数组是否能组成一个树。看了一些资料,这属于并查集的问题。首先我们明确一下满足要求的解的条件:
- 题目给定了n个node,则假如能组成一棵树,则这棵树的edge数目为n - 1,所以我们一开始要判断edges.length == n - 1
- 不可以有环路,即这个无向图必须是acyclic的, 所有的edges最后也只能组成一个connected components
在判断完edges.length == n - 1后, 我们可以想到使用Union-Find中的Quick-Find。先构造一个长为节点数n的数组id,初始化数组每个元素与他们的index相等。接下来遍历无向图的edges矩阵,假如edges[i][0]和edges[i][1]已经联通,则这个图存在环,我们返回false,否则我们把这两个元素联通起来 - 遍历id数组,将其中所有值为pid的元素值更新为qid。数组遍历结束之后返回true。 Quadratic time还是非常巨大,所以我们还可以继续对这个方法进行优化,接下来的就是Weighted Quick Union + Path Compression了, 留给二刷,继续前进。 收获是接触到了并查集的概念,很高兴。
Time Complexity - O(n2), Space Complexity - O(n)
public class Solution { public boolean validTree(int n, int[][] edges) { // dynamic connectivity if(n < 0 || edges == null || edges.length != n - 1) return false; int[] id = new int[n]; for(int i = 0; i < id.length; i++) { id[i] = i; } for(int i = 0; i < edges.length; i++) { if(!connected(id, edges[i][0], edges[i][1])) { union(id, edges[i][0], edges[i][1]); } else { return false; } } return true; } private boolean connected(int[] id, int p, int q) { return id[p] == id[q]; } private void union(int[] id, int p, int q) { int pid = id[p]; int qid = id[q]; for(int i = 0; i < id.length; i++) { if(id[i] == pid) { id[i] = qid; } } } }
二刷:
首先检测边界条件, 是否edges.length == n - 1。 其次转化为无向图检测环路,我们可以使用Union-Find来做。
下面是Weighted Quick Union + Path Compression,一如Sedgewick大神教授的。
Java:
public class Solution { private int[] id; private int[] sz; public boolean validTree(int n, int[][] edges) { if (n < 0 || edges == null || edges.length != n - 1) { return false; } id = new int[n]; sz = new int[n]; for (int i = 0; i < n; i++) { id[i] = i; sz[i] = 1; } for (int i = 0; i < edges.length; i++) { if (!isConnected(edges[i][0], edges[i][1])) { union(edges[i][0], edges[i][1]); } else { return false; } } return true; } private int getRoot(int i) { while (i != id[i]) { id[i] = id[id[i]]; i = id[i]; } return i; } private void union(int i, int j) { int rootI = getRoot(i); int rootJ = getRoot(j); if (rootI == rootJ) { return; } if (sz[rootI] < sz[rootJ]) { id[rootI] = rootJ; sz[rootJ] += sz[rootI]; } else { id[rootJ] = rootI; sz[rootI] += sz[rootJ]; } } private boolean isConnected(int i, int j) { return getRoot(i) == getRoot(j); } }
Reference:
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://www.youtube.com/watch?v=4SZTsQO9d6k&index=3&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t
https://en.wikipedia.org/wiki/Tree_(data_structure)
http://segmentfault.com/a/1190000003791051
http://blog.csdn.net/dm_vincent/article/details/7655764
http://blog.csdn.net/pointbreak1/article/details/48796691
http://nb4799.neu.edu/wordpress/?p=1143
http://algorithmsandme.in/2014/06/graphs-detecting-cycle-in-undirected-graph/
http://www.cs.nyu.edu/courses/summer04/G22.1170-001/6a-Graphs-More.pdf
https://www.me.utexas.edu/~bard/IP/Handouts/cycles.pdf
https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf
http://www.eecs.wsu.edu/~ananth/CptS223/Lectures/UnionFind.pdf
https://leetcode.com/discuss/52610/8-10-lines-union-find-dfs-and-bfs
https://leetcode.com/discuss/52563/ac-java-union-find-solution
https://leetcode.com/discuss/58600/a-java-solution-with-dfs
https://leetcode.com/discuss/72645/compressed-weighted-quick-union-solution-in-java-2ms