• 239. Sliding Window Maximum


    题目:

    Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

    For example,
    Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

    Window position                Max
    ---------------               -----
    [1  3  -1] -3  5  3  6  7       3
     1 [3  -1  -3] 5  3  6  7       3
     1  3 [-1  -3  5] 3  6  7       5
     1  3  -1 [-3  5  3] 6  7       5
     1  3  -1  -3 [5  3  6] 7       6
     1  3  -1  -3  5 [3  6  7]      7
    

    Therefore, return the max sliding window as [3,3,5,5,6,7].

    Note: 
    You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.

    Follow up:
    Could you solve it in linear time?

    Hint:

      1. How about using a data structure such as deque (double-ended queue)?
      2. The queue size need not be the same as the window’s size.
      3. Remove redundant elements and the queue should store only elements that need to be considered.

    链接: http://leetcode.com/problems/sliding-window-maximum/

    题解:

    长题目思密达。题目大意是给定一个数组和一个长为k的window,求这个window在从头到尾滑动时,每个window里的最大值组成的集合。考虑了很久,最后求助了Discuss。原理使用一个Deque,或者用doubly linkedlist也可以。我们队这个数组维护一个递减的双端队列,队列的内容为坐标index。每次移动时,移除小于当前队首坐标的元素,同时比较当前元素与队尾元素的大小,假如队尾元素较小,移除队尾元素,继续比较当前元素和队尾。比较完毕后把当前元素加入到队列中, 最后判断是否窗口已满,要输出到结果集中。

    Time Complexity - O(n), Space Complexity - O(n)。

    public class Solution {
        public int[] maxSlidingWindow(int[] nums, int k) {
            if(nums == null || nums.length == 0)
                return new int[]{};
            int len = nums.length;
            int[] res = new int[len - k + 1];
            Deque<Integer> dq = new LinkedList<>();         
            
            for(int i = 0; i < len; i++) {
                while(!dq.isEmpty() && dq.peekFirst() < i - (k - 1))    // maintain a window of length k
                    dq.pollFirst();
                
                while(!dq.isEmpty() && nums[dq.peekLast()] < nums[i])  // compare last elements with nums[i]
                    dq.pollLast();
                    
                dq.offerLast(i);
                
                if(i >= k - 1)
                    res[i - (k - 1)] = nums[dq.peekFirst()];    // since we have a descendent deque, first is always the largest in window
            }
            
            return res;
        }
    }

    题外话:

    最近感恩节,祝福大家感恩节快乐。这几天总在网上看deal,没有好好刷题,难得的4天休假也没有完全利用起来。Cousera的斯坦福算法1总算上完了,跟得很累,每周都要花不少时间。但是有一些思想和题目比较经典,比如closest pair,find inversions,matrix multiply,还有find median in data stream等等。有时间要好好复习一下。下面记录几个link有空时学习。

    https://leetcode.com/discuss/64811/easy-to-understand-double-heap-solution-in-java

    http://andrew-algorithm.blogspot.com/

    http://www.stefan-pochmann.info/spam/

    下周上一周班,周四有公司年会,之后那周是培训5天,我打算再请两周假,这样整个十二月份基本都能有时间好好做题和学习。 抽空要把加拿大签证办了,然后过去签美国签证,这样明年二月就可以顺利回国和顺便去趟日本玩了。

    二刷:

    这回也是使用一刷的方法,但是顺了很多。 也有更快速的方法,两次遍历输入入组,留给下一次再刷时来解决。

    1. 首先我们读完题目,确定是用sliding window的方法来做
    2. 我们需要先去除一些invalid case,并且判断出结果数组res的长度是 len - k + 1,这里len是输入数组的长度
    3. 然后我们建立一个doubly linked list叫做window,用来保存滑动窗口中出现的数组最大值的index,注意这里存的是index而不是value
    4. 现在我们可以开始遍历数组
      1. 首先,我们要查看window头部index,假如超过了 i - k,我们要从前部poll出这个index
      2. 接下来我们对比window尾部index位置上的值 和 当前nums[i],假如nums[i]更大,则我们poll出window的尾部index,再继续进行比较,直到window为空或者nums[i] < nums[window.peelLast()], 保证window中是一个递减排列
      3. 我们将i加入到window中
      4. 查看是否 i - (k - 1) >= 0,假如满足这个条件,则表示我们已经判断了至少k个元素,可以生成结果。
    5. 最后返回结果。  要注意写的过程中各种边界,真正面试过程中跑1 ~ 2个例子就会比较清晰。 

    Java:

    Time Complexity - O(n), Space Complexity - O(n)。

    public class Solution {
        public int[] maxSlidingWindow(int[] nums, int k) {
            if (nums == null || nums.length < k || k <= 0) return nums;
            int len = nums.length;
            int[] res = new int[len - k + 1];
            LinkedList<Integer> window = new LinkedList<>();
            for (int i = 0; i < len; i++) {
                if (!window.isEmpty() && window.peekFirst() <= i - k) window.pollFirst();
                while (!window.isEmpty() && nums[window.peekLast()] < nums[i]) window.pollLast();
                window.offerLast(i);
                if (i - (k - 1) >= 0) res[i - (k - 1)] = nums[window.peek()];
            }
            return res;
        }
    }

    Reference:

    https://leetcode.com/discuss/47139/this-is-a-typical-monotonic-queue-problem

    https://leetcode.com/discuss/99541/not-the-best-but-the-fastest-beat-97%25

    https://leetcode.com/discuss/94516/simple-java-solution-that-beats-100%25-submissions

    https://leetcode.com/discuss/83402/simple-java-solution-beats-98-87%25

    https://leetcode.com/discuss/46578/java-o-n-solution-using-deque-with-explanation

    https://leetcode.com/discuss/62695/o-n-solution-in-java-with-two-simple-pass-in-the-array

  • 相关阅读:
    分享一个js方法
    微信小程序中如何使用setData修改数组或对象中的某一参数
    微信小程序实现图片上传功能
    微信小程序图片上传放大预览删除代码
    小程序单张图片 和 九宫格图片上传、预览、删除示例
    微信小程序多图上传/朋友圈传图效果【附完整源码】
    shell 和awk性能对比
    超实用的8个Linux命令行性能监测工具
    storm分组模式
    Python程序的执行原理(转)
  • 原文地址:https://www.cnblogs.com/yrbbest/p/5004596.html
Copyright © 2020-2023  润新知