题目:
Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
链接: http://leetcode.com/problems/product-of-array-except-self/
题解:
求数组除了自己之外其他元素的乘积。 跟Trapping Rain Water很像,左右各自遍历一遍然后就可以得到结果了。
Time Complexity - O(n), Space Complexity - O(n)。
public class Solution { public int[] productExceptSelf(int[] nums) { if(nums == null || nums.length == 0) return new int[]{}; int len = nums.length; int[] res = new int[len]; res[len - 1] = 1; for(int i = len - 2; i >= 0; i--) // {a, b, c, d, e} -> {bcde, cde, de, 1} res[i] = res[i + 1] * nums[i + 1]; int lo = nums[0]; for(int i = 1; i < len; i++) { // {bcde, cde, de, 1} -> {bcde, acde, abde, abcd} res[i] *= lo; lo *= nums[i]; } return res; } }
二刷:
这道题在Amazon店面的时候直接考到了。Follow up是什么样的输入这样写会不对,哪里会overflow。再follow up是假如我有两个很长的nums,不能放进内存怎么办。其实利用乘法的交换律和结合律我们可以对其进行parallel。
下面写法是考虑可以放入内存,并且没有overflow。
- 我们先设一个结果数组output,初始化output[0] = 1。
- 然后从1到数组尾部进行遍历,动态规划,每次output[i] = output[i - 1] * nums[i - 1]
- 接下来设置一个变量product = 1, 用同样方法从 len - 2到数组头部进行遍历, product *= nums[i + 1], output[i] *= product
- 最后返回output
Java:
Time Complexity - O(n), Space Complexity - O(1)。 假如结果数组也算的话那Space Complexity就是O(n)。
public class Solution { public int[] productExceptSelf(int[] nums) { if (nums == null || nums.length < 2) { return nums; } int len = nums.length; int[] output = new int[len]; output[0] = 1; for (int i = 1; i < len; i++) { output[i] = output[i - 1] * nums[i - 1]; } int product = 1; for (int i = len - 2; i >= 0; i--) { product *= nums[i + 1]; output[i] *= product; } return output; } }
测试: