• 4. Median of Two Sorted Arrays


    题目:

    There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

    链接: http://leetcode.com/problems/median-of-two-sorted-arrays/

    题解:

    仔细研究以后发现大家一般是两种解法

    1. 把题目从find median转换为find k/2 th最小值。注意边界条件当k = 1时取A[0]与B[0]两数中较小者。Time Complexity O(log(m + n),Space Complexity O(1)
    public class Solution {
        public double findMedianSortedArrays(int A[], int B[]) {
            int len = A.length + B.length;
            if(len % 2 == 0)
                return (findKth(A, 0, B, 0, len / 2) + findKth(A, 0, B, 0, len / 2 + 1)) / 2.0;
            else
                return findKth(A, 0, B, 0, len / 2 + 1);        
        }
        
        private double findKth(int A[], int A_start, int B[], int B_start, int k){
            if(A_start >= A.length)
                return B[B_start + k - 1];
            if(B_start >= B.length)
                return A[A_start + k - 1];
            if(k == 1)
                return Math.min(A[A_start], B[B_start]);
            int A_key = A_start + k / 2 - 1 < A.length ? A[A_start + k / 2 - 1] : Integer.MAX_VALUE;
            int B_key = B_start + k / 2 - 1 < B.length ? B[B_start + k / 2 - 1] : Integer.MAX_VALUE;
            if(A_key < B_key)
                return findKth(A, A_start + k / 2, B, B_start, k - k / 2);
            else
                return findKth(A, A_start, B, B_start + k / 2, k - k / 2);
        }
    }
    

    二刷:

    Java:

    Find Kth Smallest element

    public class Solution {
        public double findMedianSortedArrays(int[] nums1, int[] nums2) {
            if (nums1 == null || nums2 == null) {
                return 0.0;
            }
            int len = nums1.length + nums2.length;
            if (len % 2 == 0) {
                return (findKth(nums1, 0, nums2, 0, len / 2) + findKth(nums1, 0, nums2, 0, len / 2 + 1)) / 2.0;
            } else {
                return findKth(nums1, 0, nums2, 0, len / 2 + 1);
            }
        }
        
        private double findKth(int[] nums1, int nums1Start, int[] nums2, int nums2Start, int k) {
            int nums1Len = nums1.length;
            int nums2Len = nums2.length;
            if (nums1Start >= nums1Len) {
                return nums2[nums2Start + k - 1];
            }
            if (nums2Start >= nums2Len) {
                return nums1[nums1Start + k - 1];
            }
            if (k == 1) {          // for cases similar to nums1 = {5}, nums 2 = {3, 6}
                return Math.min(nums1[nums1Start], nums2[nums2Start]);
            }
            int nums1Mid = nums1Start + k / 2 - 1 < nums1Len ? nums1[nums1Start + k / 2 - 1] : Integer.MAX_VALUE;
            int nums2Mid = nums2Start + k / 2 - 1 < nums2Len ? nums2[nums2Start + k / 2 - 1] : Integer.MAX_VALUE;
            if (nums1Mid < nums2Mid) {
                return findKth(nums1, nums1Start + k / 2, nums2, nums2Start, k - k / 2);
            } else {
                return findKth(nums1, nums1Start, nums2, nums2Start + k / 2, k - k / 2);
            }
        }
    }

    Python:

    写法和naming convention都不太好,,只是ac而已,后面要refine

    class Solution(object):
        def findMedianSortedArrays(self, nums1, nums2):
            """
            :type nums1: List[int]
            :type nums2: List[int]
            :rtype: float
            """
            length = len(nums1) + len(nums2)
            if length % 2 == 0:
                return (self.findKth(nums1, 0, nums2, 0, length / 2) + self.findKth(nums1, 0, nums2, 0, length / 2 + 1)) / 2.0
            else:
                return self.findKth(nums1, 0, nums2, 0, length / 2 + 1)
            
            
        def findKth(self, nums1, nums1Start, nums2, nums2Start, k):
            if nums1Start >= len(nums1):
                return nums2[nums2Start + k - 1]
            if nums2Start >= len(nums2):
                return nums1[nums1Start + k - 1]
            if k == 1:
                return min(nums1[nums1Start], nums2[nums2Start])
            nums1Mid = nums1[nums1Start + k / 2 - 1] if nums1Start + k / 2 - 1 < len(nums1) else sys.maxint
            nums2Mid = nums2[nums2Start + k / 2 - 1] if nums2Start + k / 2 - 1 < len(nums2) else sys.maxint
            if nums1Mid < nums2Mid:
                return self.findKth(nums1, nums1Start + k / 2, nums2, nums2Start, k - k / 2)
            else:
                return self.findKth(nums1, nums1Start, nums2, nums2Start + k / 2, k - k / 2)
            

    Binary Search, 这个速度非常快,在Erik Demaine的课件里有讲到解法。还可以使用Parallelism来继续进行优化,来达到O(n / lg2n)的时间复杂度。

    Time Complexity - O(log(min(m, n))), Space Complexity - O(1)

    Reference: 

    http://ocw.alfaisal.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/30C68118-E436-4FE3-8C79-6BAFBB07D935/0/ps9sol.pdf

    http://www.cnblogs.com/springfor/p/3861890.html

    http://blog.csdn.net/yutianzuijin/article/details/11499917

    https://leetcode.com/discuss/17815/share-one-divide-conquer-log-method-with-clear-description

    https://leetcode.com/discuss/11174/share-my-iterative-solution-with-o-log-min-n-m

    https://leetcode.com/discuss/30807/o-lg-m-n-c-solution-using-kth-smallest-number

    https://leetcode.com/discuss/20897/intuitive-python-solution-smallest-two-sorted-arrays-252ms

    https://leetcode.com/discuss/67341/concise-java-solution-based-on-binary-search

    https://leetcode.com/discuss/15790/share-my-o-log-min-m-n-solution-with-explanation

    https://leetcode.com/discuss/41621/very-concise-iterative-solution-with-detailed-explanation

    https://leetcode.com/discuss/9265/share-my-simple-o-log-m-n-solution-for-your-reference

  • 相关阅读:
    拓扑排序
    Frame Stacking 框架堆叠
    第二课 欧几里德算法与扩展欧几里德算法
    欧拉回路
    第一课 快速幂取模
    cookie使用汇总 c设置ookie的生命周期
    .net ArrayList的用法简介
    关于C#的partial修饰符
    sql server修改表结构的sql语句
    Web MVC模式中的基本表单提交
  • 原文地址:https://www.cnblogs.com/yrbbest/p/4430090.html
Copyright © 2020-2023  润新知