• DARTS代码分析(Pytorch)


    最近在看DARTS的代码,有一个operations.py的文件,里面是对各类点与点之间操作的方法。

    OPS = {
        'none': lambda C, stride, affine: Zero(stride),
        'avg_pool_3x3': lambda C, stride, affine: PoolBN('avg', C, 3, stride, 1, affine=affine),
        'max_pool_3x3': lambda C, stride, affine: PoolBN('max', C, 3, stride, 1, affine=affine),
        'skip_connect': lambda C, stride, affine: 
            Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
        'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
        'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
        'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
        'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine), # 5x5
        'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine), # 9x9
        'conv_7x1_1x7': lambda C, stride, affine: FacConv(C, C, 7, stride, 3, affine=affine)
    }

    首先定义10个操作,依次解释:

    • class PoolBN(nn.Module):
          """
          AvgPool or MaxPool - BN
          """
          def __init__(self, pool_type, C, kernel_size, stride, padding, affine=True):
              """
              Args:
                  pool_type: 'max' or 'avg'
              """
              super().__init__()
              if pool_type.lower() == 'max':
                  self.pool = nn.MaxPool2d(kernel_size, stride, padding)
              elif pool_type.lower() == 'avg':
                  self.pool = nn.AvgPool2d(kernel_size, stride, padding, count_include_pad=False)
              else:
                  raise ValueError()
      
              self.bn = nn.BatchNorm2d(C, affine=affine)
      
          def forward(self, x):
              out = self.pool(x)
              out = self.bn(out)
              return out

      这是池化函数,有最大池化和平均池化方法,count_include_pad=False表示不把填充的0计算进去

    • class Identity(nn.Module):
          def __init__(self):
              super().__init__()
      
          def forward(self, x):
              return x

      这个表示skip conncet

    • class FactorizedReduce(nn.Module):
          """
          Reduce feature map size by factorized pointwise(stride=2).
          """
          def __init__(self, C_in, C_out, affine=True):
              super().__init__()
              self.relu = nn.ReLU()
              self.conv1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
              self.conv2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
              self.bn = nn.BatchNorm2d(C_out, affine=affine)
      
          def forward(self, x):
              x = self.relu(x)
              out = torch.cat([self.conv1(x), self.conv2(x[:, :, 1:, 1:])], dim=1)
              out = self.bn(out)
              return out

      这个表示将特征图大小变为原来的一半

    • class DilConv(nn.Module):
          """ (Dilated) depthwise separable conv
          ReLU - (Dilated) depthwise separable - Pointwise - BN
      
          If dilation == 2, 3x3 conv => 5x5 receptive field
                            5x5 conv => 9x9 receptive field
          """
          def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
              super().__init__()
              self.net = nn.Sequential(
                  nn.ReLU(),
                  nn.Conv2d(C_in, C_in, kernel_size, stride, padding, dilation=dilation, groups=C_in,
                            bias=False),
                  nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False),
                  nn.BatchNorm2d(C_out, affine=affine)
              )
      
          def forward(self, x):
              return self.net(x)

      深度可分离卷积,groups=C_in,表示把输入特种图分成C_in(输入通道数)那么多组,然后加C_out(输出通道数)1*1的卷积,这样可以对每个通道单独提取特征,同时降低了参数量和计算量。

    • class SepConv(nn.Module):
          """ Depthwise separable conv
          DilConv(dilation=1) * 2
          """
          def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
              super().__init__()
              self.net = nn.Sequential(
                  DilConv(C_in, C_in, kernel_size, stride, padding, dilation=1, affine=affine),
                  DilConv(C_in, C_out, kernel_size, 1, padding, dilation=1, affine=affine)
              )
      
          def forward(self, x):
              return self.net(x)

      深度可分离卷积,由两个上面的深度分组卷积组成

    • class FacConv(nn.Module):
          """ Factorized conv
          ReLU - Conv(Kx1) - Conv(1xK) - BN
          """
          def __init__(self, C_in, C_out, kernel_length, stride, padding, affine=True):
              super().__init__()
              self.net = nn.Sequential(
                  nn.ReLU(),
                  nn.Conv2d(C_in, C_in, (kernel_length, 1), stride, padding, bias=False),
                  nn.Conv2d(C_in, C_out, (1, kernel_length), stride, padding, bias=False),
                  nn.BatchNorm2d(C_out, affine=affine)
              )
      
          def forward(self, x):
              return self.net(x)

      这个表示长方形的卷积,增加了一点特征图的长和宽

    • class Zero(nn.Module):
          def __init__(self, stride):
              super().__init__()
              self.stride = stride
      
          def forward(self, x):
              if self.stride == 1:
                  return x * 0.
      
              # re-sizing by stride
              return x[:, :, ::self.stride, ::self.stride] * 0.

      这个表示把特种图的输出变为全是0,但特征图的大小会根据stride而改变

  • 相关阅读:
    学习OpenGL:笔记八
    学习OpenGL:笔记七
    学习OpenGL:笔记六
    学习OpenGL:笔记五
    学习OpenGL:笔记四
    将Redis加入到Windows服务中
    Oracle设置列宽,行数
    word文档最上面有一条不是页眉的线
    myeclipse中配置自己安装的Tomcat
    SSM框架mapper.xml模糊查询语句
  • 原文地址:https://www.cnblogs.com/yqpy/p/11453074.html
Copyright © 2020-2023  润新知