• [BZOJ2125]最短路[圆方树]


    题意

    给定仙人掌,多次询问两点之间的最短路径。

    (nle 10000, Qle 10000​)

    分析

    • 建出圆方树,分路径 lca 是圆点还是方点讨论。
    • 预处理出根圆点到每个圆点的最短距离 (dis)
    • 如果 lca 是圆点,那么最短距离就是 (dis_a+dis_b-2*dis_{lca})
    • 否则找到 lca 到 a, b 路径上的第一个圆点 x, y,最短距离即 (dis_a-dis_x+dis_b-dis_y+dist(x, y)) 。其中 (dist(x, y)) 表示在同一个环中的两个节点 (x, y) 之间的最短距离。
    • 复杂度 (O(nlogn+Qlogn))

    代码

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    #define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    #define pb push_back
    #define re(x) memset(x, 0, sizeof x)
    inline int gi() {
        int x = 0,f = 1;
        char ch = getchar();
        while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
        while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
        return x * f;
    }
    template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
    template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
    const int N = 2e4 + 7;
    int n, m, edc, dfn, tp, ndc, ans, Q;
    int low[N], pre[N], stk[N], f[N][2], head[N];
    int up[N][18], s[N], dis[N], tot[N], dep[N];
    vector<int>G[N];
    map<pair<int, int>, int> dist;
    struct edge {
    	int lst, to;
    	edge(){}edge(int lst, int to):lst(lst), to(to){}
    }e[N << 1];
    void Add(int a, int b) {
    	e[++edc] = edge(head[a], b), head[a] = edc;
    	e[++edc] = edge(head[b], a), head[b] = edc;
    }
    void tarjan(int u, int fa) {
    	low[u] = pre[u] = ++dfn;
    	stk[++tp] = u;
    	go(u)if(v ^ fa) {
    		if(!low[v]) {
    			tarjan(v, u);
    			Min(pre[u], pre[v]);
    			if(pre[v] >= low[u]) {
    				G[u].pb(++ndc);
    				for(int x = -1; x ^ v; )
    				G[ndc].pb(x = stk[tp--]);
    			}
    		}else Min(pre[u], low[v]);
    	}
    }
    #define mp make_pair
    void dfs(int u, int fa) {
    	up[u][0] = fa;
    	for(int i = 1; i <= 17; ++i) up[u][i] = up[up[u][i - 1]][i - 1];
    	if(u > n) {
    		tot[u] += dist[mp(fa, G[u][0])];
    		s[G[u][0]] = dist[mp(fa, G[u][0])];
    		for(int i = 1; i < G[u].size(); ++i) {
    			s[G[u][i]] = s[G[u][i - 1]] + dist[mp(G[u][i - 1], G[u][i])];
    			tot[u] += dist[mp(G[u][i - 1], G[u][i])];
    		}
    		tot[u] += dist[mp(fa, G[u][G[u].size() - 1])];
    	}
    	for(int i = 0; i < G[u].size(); ++i) {
    		int v = G[u][i];
    		dep[v] = dep[u] + 1;
    		if(u > n) dis[v] = dis[fa] + min(s[v], tot[u] - s[v]);
    		dfs(v, u);
    	}
    }
    int get(int a, int b) {
    	if(a == b) return 0;
    	if(dep[a] > dep[b]) swap(a, b);
    	int x = a, y = b;
    	for(int i = 17; ~i; --i) if(dep[up[b][i]] >= dep[a]) b = up[b][i];
    	if(a == b) {
    		b = y;
    		for(int i = 17; ~i; --i) if(dep[up[b][i]] > dep[a]) b = up[b][i];
    		if(a <= n) return dis[y] - dis[a];
    		return dis[y] - dis[b];
    	}
    	for(int i = 17; ~i; --i) if(up[a][i] != up[b][i]){
    		a = up[a][i];
    		b = up[b][i];
    	}
    	int lca = up[a][0];
    	if(lca <= n) {
    		return dis[x] + dis[y] - 2 * dis[lca];
    	}else {
    		return dis[x] - dis[a] + dis[y] - dis[b] + min(abs(s[b] - s[a]), tot[lca] - abs(s[b] - s[a]));
    	}
    }
    int main() {
    	n = gi(), m = gi();Q = gi();ndc = n;
    	rep(i, 1, m) {
    		int a = gi(), b = gi(), c = gi();
    		Add(a, b);
    		dist[make_pair(a, b)] = dist[make_pair(b, a)] = c;
    	}
    	tarjan(1, 0);
    	dep[1] = 1, dfs(1, 0);
    	while(Q--) {
    		int a = gi(), b = gi();
    		printf("%d
    ", get(a, b));
    	}
    	return 0;
    }
    
  • 相关阅读:
    HTTP Continuation or nonHTTP traffic 数据包
    linuxTcp IP协议栈源码阅读笔记(转)
    使用Windows命令行启动服务
    数据库集群
    ShellExecute
    oracle 中数据库完全导入导出:cmd命令行模式
    理解ORACLE数据库字符集
    asp.net 编码设置
    ShellExecute与ShellExecuteEx的用法
    C++用位运算实现循环移位
  • 原文地址:https://www.cnblogs.com/yqgAKIOI/p/10449156.html
Copyright © 2020-2023  润新知