• 1021 Deepest Root (25)(25 point(s))


    problem

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
    
    Input Specification:
    
    Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
    
    Output Specification:
    
    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
    
    Sample Input 1:
    
    5
    1 2
    1 3
    1 4
    2 5
    Sample Output 1:
    
    3
    4
    5
    Sample Input 2:
    
    5
    1 3
    1 4
    2 5
    3 4
    Sample Output 2:
    
    Error: 2 components
    

    tip

    answer

    #include <cassert>
    #include <set>
    #include <iostream>
    #include <vector>
    #include <cstring>
    
    #define Max 10010
    #define fi first
    #define se second
    using namespace std;
    
    int N;
    int Root[Max], V[Max];
    vector<int > E[Max];
    set<int > S, Last;
    set<int>::iterator it;
    
    void Init(){
    	for(int i = 1; i <= N; i++){
    		Root[i] = i;
    	}
    }
    
    int Find(int i){
    	if(Root[i] != i) Root[i] = Find(Root[i]);
    	return Root[i];
    }
    
    void Union(int a, int b){
    	int ra = Find(a);
    	int rb = Find(b);
    	if(ra == rb) return ;
    	Root[ra] = Find(Root[rb]);
    }
    
    int TreeNum() {
    	int num = 0;
    	for(int i = 1; i <= N; i++){
    		if(Root[i] == i) num++;
    	}
    	return num;
    }
    
    int DFS(int t, int deep, int &maxD){
    	if(deep > maxD){
    		maxD = deep;
    		S.clear();
    		S.insert(t);
    	}
    	if(deep == maxD){
    		S.insert(t);
    	}
    	V[t] = 1;
    	for(int i = 0; i < E[t].size(); i ++){
    		if(!V[E[t][i]]){
    			DFS(E[t][i], deep+1, maxD);
    		}
    	}
    }
    
    void InitV(){
    	memset(V, 0, sizeof(V));
    }
    
    void PrintStatus(){
    	for(it = S.begin(); it != S.end(); it++){
    		cout<<*it<<" ";
    	}
    	cout<<endl;
    }
    int main(){
    //	freopen("test.txt", "r", stdin) ;
    	ios::sync_with_stdio(false);
    	//N<= 10000
    	cin>>N;
    	if(N == 0){
    		assert(false);
    		cout<<"0"<<endl;
    	}
    	Init();
    	int a, b;
    	for(int i = 0; i < N-1; i++) {
    		cin>>a>>b;
    		E[a].push_back(b);
    		E[b].push_back(a);
    		Union(a, b);
    	}
    	if(TreeNum() > 1) {
    		cout<<"Error: "<<TreeNum()<<" components";
    	}else{
    		int maxD = 0, deepN;
    		DFS(1, 0, maxD);
    //		PrintStatus(); 
    		for(it = S.begin(); it != S.end(); it++){
    			Last.insert(*it);
    			deepN = *it;
    		}
    		maxD = 0;
    //		cout<<deepN<<endl;
    		InitV();
    		DFS(deepN, 0, maxD);
    //		PrintStatus();
    		for(it = S.begin(); it != S.end(); it++){
    			Last.insert(*it);
    		}
    		for(it = Last.begin(); it != Last.end(); it++){
    			cout<<*it<<endl;
    		}
    	}
    	return 0; 
    }
    

    exprience

    • acyclic 无环的
  • 相关阅读:
    国内HTML5前端开发框架汇总
    vs2012不能打开项目解决办法
    Java Linux 语法
    Java MySQL慢查询优化
    Java 基本数据类型
    Java 多线程同步
    Spring Boot 项目学习 (四) Spring Boot整合Swagger2自动生成API文档
    Spring Boot 项目学习 (三) Spring Boot + Redis 搭建
    Spring Boot 项目学习 (二) MySql + MyBatis 注解 + 分页控件 配置
    Java Mybatis 缓存介绍
  • 原文地址:https://www.cnblogs.com/yoyo-sincerely/p/9325293.html
Copyright © 2020-2023  润新知