• poj 3132


    Sum of Different Primes
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 3360   Accepted: 2092

    Description

    A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

    When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

    Your job is to write a program that reports the number of such ways for the given n and k.

    Input

    The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

    Output

    The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

    Sample Input

    24 3 
    24 2 
    2 1 
    1 1 
    4 2 
    18 3 
    17 1 
    17 3 
    17 4 
    100 5 
    1000 10 
    1120 14 
    0 0

    Sample Output

    2 
    3 
    1 
    0 
    0 
    2 
    1 
    0 
    1 
    55 
    200102899 
    2079324314

    思路:prim[]为素数表;
       f[i][j]为j拆分成i个素数和的方案数(1<=i&&i<=14,prim[i]<=j&&j<=1199) 边界f[0][0]=1;
       int num 为prim[]的表长;
       使用DP计算k个不同素数的和为n的方案总数:
          枚举prim[]中的prim[i](0<=i&&i<=num);
            按递减顺序枚举素数的个数j(14>=j&&j>=1);
               递减枚举前j个素数的和p(1199>=p&&p>=prim[i]);
                  累计prim[i]作为第j个素数的方案总数f[j][p]+=f[j-1][p-prim[i]];
          
       f[k][n]即为解!!!!!!
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<iomanip>
     7 #include<cmath>
     8 #include<vector>
     9 #include<queue>
    10 #include<stack>
    11 using namespace std;
    12 #define PI 3.141592653589792128462643383279502
    13 #define N 1200
    14 int prim[N]={2,3},f[15][N],t;
    15 int prime(){
    16     int t=2,i,j,flag;
    17     for(i=5;i<N;i+=2){
    18         for(j=0,flag=1;prim[j]*prim[j]<=i;j++)
    19             if(i%prim[j]==0) flag=0;
    20         if(flag){
    21             prim[t++]=i;
    22         }
    23     }
    24     return t-1;
    25 }
    26 void s(){
    27      for(int i=0;i<=t;i++){
    28                 for(int j=14;j>=1;j--){
    29                     for(int p=1199;p>=prim[i];p--)
    30                         f[j][p]+=f[j-1][p-prim[i]];
    31                 }
    32             }
    33 }
    34 int main(){
    35     //#ifdef CDZSC_June
    36     //freopen("in.txt","r",stdin);
    37     //#endif
    38     //std::ios::sync_with_stdio(false);
    39     t=prime();
    40     int k,n;
    41     while(scanf("%d%d",&n,&k)){
    42         memset(f,0,sizeof(f));
    43         f[0][0]=1;
    44         if(k==0&&n==0) break;
    45         s();
    46          cout<<f[k][n]<<endl;
    47     }
    48     return 0;
    49 }
  • 相关阅读:
    Error creating document instance. Cause: org.xml.sax.SAXParseException; lineNumber: 1; columnNumber: 1; 前言中不允许有内容。
    [Pulgin] jQuery插件之ajaxFileUpload
    [Plugin] JQuery.uploadify上传文件插件的使用详解For ASP.NET
    [Plugin] 文件上传利器SWFUpload使用指南
    [HTML] 微信开发之移动手机WEB页面(HTML5)Javascript实现一键拨号及短信发送功能
    [JavaEE] IBM
    [TB-Technology] 淘宝在数据处理领域的项目及开源产品介绍
    [Hacker] 端口大全
    [.Net] DataTable添加列和行的三种方法
    [.Net] 导出Excel中身份证等数字串的解决方式
  • 原文地址:https://www.cnblogs.com/yoyo-sincerely/p/5074749.html
Copyright © 2020-2023  润新知