• 数据结构总结


    内容:

    无序链表实现符号表

    有序数组对实现符号表

    二叉树结构

    红黑树结构(无删除方法)

    拉链法哈希表

    线性探测法哈希表

    import java.io.CharArrayReader;
    import java.util.ArrayList;
    import java.util.Iterator;
    
    /**
     * @ClassName LinkedST
     * @Author wangyudi
     * @Version 1.0
     * @Description 无序链表(将键值对存储在链表的结点中)实现的符号表
     * <p>
     * 成员变量:头指针 first、链表大小 count 、匿名内部类结点 Node
     * 成员方法: 获取值get()、插入/更新值put()、大小size()、删除delete()   (实现基本的增删该查)
     * <p>
     * 匿名内部类Node
     * 成员变量:键key、值value、下一个节点 next
     */
    public class LinkedST<Key extends Comparable<Key>, Value> implements Iterable<Value> {
        private Node first;
        private int count; //链表结点数量
    
        private class Node {
            Key key;
            Value val;
            Node next;
    
            public Node(Key key, Value val, Node next) {
                this.key = key;
                this.val = val;
                this.next = next;
            }
        }
    
        public LinkedST() {
            this.first = null;
            this.count = 0;
        }
    
        /**
         * 根据键从符号表中查询值
         * 实现方法:遍历整个链表
         * 注意:符号表为空的情况
         *
         * @param key
         * @return
         */
        public Value get(Key key) {
            for (Node i = first; i != null; i = i.next) { //链表遍历的通用方法
                if (i.key == key) return i.val; //找到
            }
            return null;
        }
    
        /**
         * 向符号表更新或插入一个键值对
         * 实现方法:遍历
         * 注意:先空符号表插入键值对的情况
         *
         * @param key
         * @param val
         */
        public void put(Key key, Value val) {
            for (Node i = first; i != null; i = i.next) {
                if (i.key == key) { //找到相同的键,更新后返回
                    i.val = val;
                    return;
                }
            }
            count++;
            first = new Node(key, val, first); //考虑了空链表的情况
        }
    
        /**
         * 根据键删除键值对
         * 注意点:空符号表的情况; 需要操作被删除结点的前一个结点故使用两个指针
         *
         * @param key
         * @return
         */
        public Value delete(Key key) {
            Node p1 = null; //考录到需要访问链表删除结点的前一结点
            Node p2 = first;
            while (p2 != null) {
                if (p2.key == key) {
                    Value temp = null;
                    if (p1 == null) { //删除头结点的情况
                        temp = p2.val;
                        first = first.next;
                    } else {  //非删除头结点
                        p1.next = p2.next;
                        temp = p2.val;
                    }
                    p1 = null;
                    p2 = null;
                    count--;
                    return temp;
                }
                p1 = p2;
                p2 = p2.next;
            }
            return null;
        }
    
        @Override
        public Iterator<Value> iterator() {
            return new Iterator<Value>() {
                Node i = first;
    
                @Override
                public boolean hasNext() {
                    if (i != null) return true;
                    return false;
                }
    
                @Override
                public Value next() {
                    Value temp = i.val;
                    i = i.next;
                    return temp;
                }
            };
        }
    }
    
    /**
     * @ClassName ArrayST
     * @Author wangyudi
     * @Date 2019/6/27 16:46
     * @Version 1.0
     * @Description 有序平行数组对实现符号表
     * 成员变量:键数组、值数组、数量
     * 成员函数:获取值get()、添加/更新值put()、获取键的排名rank()、删除键值对delete()、获取大小size()、显示display()、调整内部数组的大小resize()
     * 注意:实现的关键在于 :获取键的排名方法rank(),使用二分法实现快速的查找,其他操作都依赖该方法。
     */
    class ArrayST<Key extends Comparable<Key>, Value> {
        private Key[] keys;
        private Value[] vals;
        private int count; //数组中元素的个数
        private int capacity; //数组容量
    
        public ArrayST(int capacity) {
            this.capacity = capacity; //必要情况下可以扩容
            this.count = 0;
            this.keys = (Key[]) new Comparable[capacity];
            this.vals = (Value[]) new Object[capacity];
        }
    
        public ArrayST() {
            this(100);
        }
    
        /**
         * 根据键获取值
         * 注意点: rank()方法返回的数组索引是向上取整的
         *
         * @param key
         * @return
         */
        public Value get(Key key) {
            int index = rank(key);
            //需要通过以下两条来判断是否找到相同的键
            //使用compareTo方法来判断是否相等,而不是直接使用==
            if (index < count && keys[index].compareTo(key) == 0) { //index在有效元素的索引范围内(index为向上取整,很有可能会超出数组的范围);检查index所在位置的值是否相同
                return vals[index];
            }
            return null;
        }
    
    
        public void put(Key key, Value val) {
            int index = rank(key);
            if (index < count && keys[index] == key) { //找到对应的键
                vals[index] = val;
                return;
            }
            ensureCapacity(); //添加前确保数组的容量
            for (int i = count - 1; i >= index; i--) {  //后移
                keys[i + 1] = keys[i];
                vals[i + 1] = vals[i];
            }
            keys[index] = key;
            vals[index] = val;
            count++;
        }
    
        public Value delete(Key key) {
            int index = rank(key);
            if (index < count && keys[index] == key) { //找到对应的键
                Value tempVal = vals[index];
                for (int i = index + 1; i < count; i++) {
                    keys[i - 1] = keys[i];
                    vals[i - 1] = vals[i];
                }
                keys[count - 1] = null;
                vals[count - 1] = null;
                count--;
                ensureCapacity();
                return tempVal;
            }
            return null;
        }
    
        /**
         * 该数据结构的关键
         * 这里使用循环实现的二分法查找
         * 注意点:空数组的情况; 返回lo,这里返回值是rank的向上取整值
         *
         * @param key
         * @return
         */
        public int rank(Key key) {
            if (keys.length == 0) ;//空数组的情况
            int lo = 0;
            int hi = count - 1;
            int mid = 0;
            while (lo <= hi) {
                mid = lo + (hi - lo) / 2;
                int cmp = keys[mid].compareTo(key);
                if (cmp < 0) lo = mid + 1;
                else if (cmp > 0) hi = mid - 1;
                else return mid;  //找到键
            }
            return lo; //向上取整
        }
    
        private void resize(int newCapacity) {
            Key[] newkeys = (Key[]) new Comparable[newCapacity];
            Value[] newvals = (Value[]) new Object[newCapacity];
            for (int i = 0; i < count; i++) {
                newkeys[i] = keys[i];
                newvals[i] = vals[i];
            }
            this.keys = newkeys;
            this.vals = newvals;
            System.out.println("resize capacite down");
            capacity = newCapacity;
        }
    
        public void ensureCapacity() {
            if (count > capacity / 2)
                resize(capacity * 2);
            if (count > 0 && count < capacity / 8)
                resize(capacity / 2);
        }
    
        public void exch(int a, int b) { //交换两处索引对应的键值对
            Key tempKey = keys[a];
            Value tempVal = vals[a];
            keys[a] = keys[b];
            vals[a] = vals[b];
            keys[b] = tempKey;
            vals[b] = tempVal;
        }
    
        public int size() {
            return count;
        }
    
        public void display() {
            for (int i = 0; i < count; i++) {
                System.out.print(keys[i] + "    ");
            }
            System.out.println();
            for (int i = 0; i < count; i++) {
                System.out.print(vals[i] + "  ");
            }
            System.out.println();
        }
    }
    
    
    /**
     * @ClassName BinaryTree
     * @Author wangyudi
     * @Version 1.0
     * @Description 二叉数数据结构
     * 成员变量:根结点 root 结点类 Node
     * 成员方法:大小 size、获取值 get、加入值 put、
     * 最大键 max、最小键 min、向下取整floor、向上取整ceiling、
     * 根据排名选择 select、排名 rank、
     * 删除最小键 deleteMin、删除任意键 delete;
     */
    class BinaryTree<Key extends Comparable<Key>, Value> {
        public Node root; //只需要一个根结点便可以访问整个二叉树
    
        private class Node {
            Key key;
            Value val;
            Node left;
            Node right;
            int size; //用于rank() select()方法
    
            public Node(Key key, Value val, Node left, Node right, int size) {
                this.key = key;
                this.val = val;
                this.left = left;
                this.right = right;
                this.size = size;
            }
        }
    
        public BinaryTree() {
            root = null;
        }
    
        public int size() {
            return size(root);
        }
    
        public int size(Node node) {
            if (node == null) return 0;
    //        return size(node.left)+size(node.right)+1; //这种递归的方法不好,要充分利用节点中保存的size
            return node.size;
        }
    
        public void display() {
            display(root);
        }
    
        public void display(Node node) {
            if (node == null) return;
            //中序遍历
            display(node.left);
            System.out.print(node.val + "  ");
            display(node.right);
        }
    
        public void put(Key key, Value val) {
            root = put(key, val, root);//注意
        }
    
        public Node put(Key key, Value val, Node node) {  //需要向父亲接返回子节点
            if (node == null) { //没有找到
                return new Node(key, val, null, null, 1);
            }
            int cmp = key.compareTo(node.key);
            if (cmp < 0) node.left = put(key, val, node.left);
            else if (cmp > 0) node.right = put(key, val, node.right);
            else { //找到相同的键
                node.val = val;
                return node;
            }
            node.size = 1 + size(node.right) + size(node.left);
            return node;
        }
    
        public Value get(Key key) {
            return get(root, key);
        }
    
        public Value get(Node node, Key key) {
            if (node == null) return null; //没有找到
            int cmp = key.compareTo(node.key);
            if (cmp < 0) return get(node.left, key);
            else if (cmp > 0) return get(node.right, key);
            else return node.val;
        }
    
        /**
         * 从二叉树中删除一个结点
         * 找到结点并删除的情况有四种:
         * 只有左结点
         * 只有右结点
         * 没有结点
         * 有两个结点
         *
         * @param key
         * @return
         */
        public void delete(Key key) {
            root = delete(key, root);
        }
    
        public Node delete(Key key, Node node) {
            if (node == null) return null; //do not find the target node
            int cmp = key.compareTo(node.key);
            if (cmp < 0) node.left = delete(key, node.left);
            else if (cmp > 0) node.right = delete(key, node.right);
            else { //找到需要删除的结点 分为四种情况
                if (node.left == null) return node.right;
                if (node.right == null) return node.left;
                //删除的结点有两个子节点  后续结点为右子树中的最小结点
                Node temp = node; //保存即将删除的接点
                node = min(node.right);//后继接点是右子树中的最小键  同时需要将该后继接点返回
                node.right = deleteMin(node.right);
                node.left = temp.left;
            }
            node.size = 1 + size(node.left) + size(node.right);
            return node;
        }
    
        public Node deleteMin() {
            return deleteMin(root);
        }
    
        public Node deleteMin(Node node) {
            if (node == null) return null;
            if (node.left == null) {
                return node.right;
            }
            node.left = deleteMin(node.left);
            node.size = 1 + size(node.left) + size(node.right);
            return node;
        }
    
        public Node min(Node node) {
            if (node.left == null) return node;
            return min(node.left);
        }
    
        /**
         * 向下取整
         *
         * @param key
         * @param node
         * @return
         */
        public Node floor(Key key, Node node) {
            if (node == null) return null;
            int cmp = key.compareTo(node.key);
            if (cmp < 0) return floor(key, node.left);//左子树中
            else if (cmp == 0) return node;
            else { //向下取整结点为根节点或者是在右子树中的
                Node temp = floor(key, node.right);
                if (temp != null) return temp;
                return node;
            }
        }
    
        public int rank(Key key, Node node) {
            if (node == null) return 0;
            int cmp = key.compareTo(node.key);
            if (cmp < 0) return rank(key, node.left);
            else if (cmp > 0) return 1 + size(node.left) + rank(key, node.right);
            else return size(node.left);
        }
    
        public Node select(int k) {
            return select(k, root);
        }
    
        public Node select(int k, Node node) {
            if (k < 0 || node == null) return null; //非法输入
            int leftSize = size(node.left);
            if (leftSize == k) return node;
            else if (leftSize < 0) {
                return select(k - 1 - size(node.left), node.right); //-1 是根节点
            } else {
                return select(k, node.left);
            }
        }
    }
    
    
    /**
     * @ClassName RedBlackTree
     * @Author wangyudi
     * @Date 2019/7/2 20:57
     * @Version 1.0
     * @Description 红黑树:在二叉树的基础上增加了红键和黑键,保证了树的平衡性。(除了put  delete方法,其他方法与二叉树共用)
     * 增改put 查get
     * 注意:在红黑树中,不允许有红右键、不允许有两个连续的红键、不允许有两个红子节点。
     * 实现上述要求的红黑二叉树与2-3树等价,能够满足平衡性
     */
    class RedBlackTree<Key extends Comparable<Key>, Value> {
        private Node root;
    
        private class Node {
            Key key;
            Value val;
            Node left;
            Node right;
            boolean color;
            int size;
    
            public Node(Key key, Value val, Node left, Node right, boolean color, int size) {
                this.key = key;
                this.val = val;
                this.left = left;
                this.right = right;
                this.color = color;
                this.size = size;
            }
        }
    
        public void display() {
            display(root);
        }
    
        public void display(Node node) {
            if (node == null) return;
            display(node.left);
            System.out.print(node.val);
            display(node.right);
        }
    
        /**
         * 查找(与二叉树一致)
         *
         * @param key
         * @return
         */
        public Value get(Key key) {
            return get(key, root);
        }
    
        public Value get(Key key, Node node) {
            if (node == null) return null;
            int cmp = key.compareTo(node.key);
            if (cmp < 0) return get(key, node.left);
            else if (cmp > 0) return get(key, node.right);
            else {
                return node.val;
            }
        }
    
        /**
         * 向红黑树中插入键值对
         * 注意点:查询等不需要改变红黑树结构的方法与二叉树一致
         * 没有实现比较困难的删除方法
         *
         * @param key
         * @param val
         */
        public void put(Key key, Value val) {
            root = put(key, val, root);
            root.color = false;
        }
    
        public Node put(Key key, Value val, Node node) {
            //没有找到结点,则插入一个红结点
            if (node == null) return new Node(key, val, null, null, true, 1);
            int cmp = key.compareTo(node.key);
            if (cmp < 0) node.left = put(key, val, node.left);
            else if (cmp > 0) node.right = put(key, val, node.right);
            else { //在树中找到结点
                node.val = val;
                return node;
            }
            //沿着查询的路线回归
            //回归的过程中,对父节点进行相应的操作,以保证树的平衡性(记住)
            if (isRed(node.right) && !isRed(node.left)) node = rotateLeft(node);
            if (isRed(node.left) && isRed(node.left.left)) node = rotateRight(node);
            if (isRed(node.left) && isRed(node.right)) node = filpColor(node);
            node.size = 1 + size(node.right) + size(node.left);
            return node;
        }
    
        /**
         * 将右红节点旋转到左边
         *
         * @param node
         * @return
         */
        private Node rotateLeft(Node node) {
            Node temp = node;
            node = temp.right; //需要返回的节点
            temp.right = node.left;
            node.left = temp;
    
            node.color = temp.color;
            node.size = temp.size;
            temp.color = true;
            temp.size = 1 + size(node.left) + size(node.right);
            return node;
        }
    
        private Node rotateRight(Node node) {
            Node temp = node;
            node = temp.left;
            temp.left = node.right;
            node.right = temp;
    
            node.color = temp.color;
            node.size = temp.size;
            temp.color = true;
            temp.size = 1 + size(node.left) + size(node.right);
            return node;
        }
    
        /**
         * 处理两个节点都是红节点的情况
         *
         * @param node
         * @return
         */
        private Node filpColor(Node node) {
            node.color = true;
            node.right.color = node.left.color = false;
            return node;
        }
    
        private boolean isRed(Node node) {
            if (node == null) return false;
            return node.color;
        }
    
        private int size(Node node) {
            if (node == null) return 0;
            return node.size;
        }
    
    }
    
    /**
     * @ClassName SeparateChainHashST
     * @Author wangyudi
     * @Date 2019/7/2 22:25
     * @Version 1.0
     * @Description 拉链法散列表(哈希表)
     * 数组和链表的组合
     * 需要解决的问题:1 散列值的计算   2 解决冲突碰撞
     * <p>
     * 成员变量: 保存链表的数组  数组的大小  键值对数
     * 方法:get  put  delete
     */
    
    class SeparateChainHashST<Key extends Comparable<Key>, Value> {
        private Chain<Key, Value>[] st; //链表对象数组
        private int capacity;
        private int count;
    
        public SeparateChainHashST(int capacity) {
            this.capacity = capacity;
            this.st = (Chain<Key, Value>[]) new Chain[capacity];
            //注意: 数组初始化
            for (int i = 0; i < capacity; i++) {
                st[i] = new Chain<Key, Value>();
            }
            this.count = 0;
        }
    
        public SeparateChainHashST() {
            this(996);
        }
    
        public int size() {
            return count;
        }
    
        private int hash(Key key) {
            if (key == null) return -1;
            return (key.hashCode() & 0x7FFFFFFF) % capacity;
        }
    
        //关于拉链法实现的哈希表的方法
        //第一步,根据哈希值找到相应的数组中存储的链表
        //第二步,接下来的增删改查是链表的问题
        public Value get(Key key) {
            int index = hash(key);
            return st[index].get(key);
        }
    
        public void put(Key key, Value val) {
            int index = hash(key);
            if (st[index].put(key, val)) count++; //插入的情况加 1
        }
    
        public Value delete(Key key) {
            int index = hash(key);
            Value val = st[index].delete(key);
            if (val != null) count--;
            return val;
        }
    
        public void display() {
            for (int i = 0; i < capacity; i++) {
                for (Object[] info : st[i]) {
                    System.out.println((Value) info[1]);
                }
            }
        }
    }
    
    /**
     * 用于实现拉链法哈希表的链表数据结构
     *
     * @param <Key>
     * @param <Value>
     */
    class Chain<Key extends Comparable<Key>, Value> implements Iterable<Object[]> {
        private Node first;
    
        private class Node {
            Key key;
            Value value;
            Node next;
    
            public Node(Key key, Value value, Node next) {
                this.key = key;
                this.value = value;
                this.next = next;
            }
        }
    
        public Value get(Key key) {
            for (Node i = first; i != null; i = i.next) { //遍历查找
                if (i.key == key) {
                    return i.value; //找到则返回
                }
            }
            return null;
        }
    
        public boolean put(Key key, Value value) {
            for (Node i = first; i != null; i = i.next) {
                if (key.compareTo(i.key) == 0) {
                    i.value = value;
                    return false; //找到相同的键
                }
            }
            first = new Node(key, value, first);
            return true;//在头部加入键值对
        }
    
        /**
         * 删除单向链表中的某一个结点
         *
         * @param key
         * @return
         */
        public Value delete(Key key) {
            Node f = null; //保存前一结点的信息
            Node b = first;
            while (b != null && b.key != key) {
                f = b;
                b = b.next;
            }
            if (b != null) { //找到要删除的对象
                Value val = null;
                if (f == null) {
                    val = first.value;
                    first = b.next; //特殊处理
                } else {
                    val = b.value;
                    f.next = b.next;
                }
                b.next = null;//为了尽快GC
                b = null;
                return val;
            }
            return null;
        }
    
        @Override
        public Iterator<Object[]> iterator() {
            return new Iterator() {
                Node i = first;
    
                @Override
                public boolean hasNext() {
                    if (i != null) return true;
                    return false;
                }
    
                @Override
                public Object[] next() {
                    Key tempkey = i.key;
                    Value tempValue = i.value;
                    Object[] info = new Object[]{(Object) tempkey, (Object) tempValue};
                    i = i.next;
                    return info;
                }
            };
        }
    }
    
    /**
     * @ClassName LinearProbeHashST
     * @Author wangyudi
     * @Date 2019/7/3 10:53
     * @Version 1.0
     * @Description 用线性试探法实现哈希表
     * <p>
     * 成员变量: 键数组 值数组 容量 键值对数量
     * 成员方法: get  put delete resize
     */
    class LinearProbeHashST<Key extends Comparable<Key>, Value> {
        private Key[] keys;
        private Value[] vals;
        private int count;
        private int capacity;
    
        public LinearProbeHashST(int capacity) {
            this.capacity = capacity;
            this.count = 0;
            keys = (Key[]) new Comparable[capacity];
            vals = (Value[]) new Object[capacity];
        }
    
        public LinearProbeHashST() {
            this(100);
        }
    
        private int hash(Key key) {
            if (key == null) return -1;
            return (key.hashCode() & 0x7FFFFFFF) % capacity;
        }
    
        public Value get(Key key) {
            int index = hash(key);
            while (keys[index] != null) { //在NULL之前遍历查找,如果找到则直接返回
                if (keys[index] == key) return vals[index];
                index = (index + 1) % capacity;
            }
            return null;
        }
    
        public void put(Key key, Value val) {
            ensureCapacity(); //调整容量大小会影响哈希值的计算
            int index = hash(key);
            for (; keys[index] != null; index = (index + 1) % capacity) {
                if (key.compareTo(keys[index])==0) {
                    vals[index] = val; //找到相同的值,用ComparaTo()比较
                    return;
                }
            }
            keys[index] = key;
            vals[index] = val;
            count++;
        }
    
        /**
         * 删除之后,被删除键值对后面的键值对需要重新插入
         *
         * @param key
         * @return
         */
        public Value delete(Key key) {
            int index = hash(key);
            Value retVal = null;
            while (keys[index] != null) {
                if (keys[index] == key) {//找到相同的键
                    retVal = vals[index];
                    keys[index] = null;
                    vals[index] = null;
                    count--;
                }
                index = (index + 1) % capacity;
            }
            //如果没有删除,则指向null
            //如果删除,index指向被删除键值对的下一键值对
            while (keys[index] != null) {
                Key tempKey = keys[index];
                Value tempVal = vals[index];
                keys[index] = null;
                vals[index] = null;
                count--;
                put(tempKey, tempVal);
                index = (index + 1) % capacity;
            }
            ensureCapacity();
            return retVal;
        }
    
    
        public void ensureCapacity() {
            if (count > capacity / 2) resize(capacity * 2);
            if (count > 0 && count < capacity / 8) resize(capacity / 2);
        }
    
        public void resize(int newCapacity) {
            LinearProbeHashST<Key, Value> tempST = new LinearProbeHashST<>(newCapacity); //该临时哈希表也会调用resize()
            for (int i = 0; i < capacity; i++) {
                if (keys[i] != null) {
                    tempST.put(keys[i], vals[i]);
                    tempST.count++;
                }//注意:遍历所有键值对,只对键不为空的对象操作
            }
    //        capacity = newCapacity;//错误,临时哈希表也会调用resize(),导致capacity出错
            capacity = tempST.capacity;
            keys = tempST.keys;
            vals = tempST.vals;
        }
    
        /**
         * 返回实现迭代器的对象
         *
         * @return
         */
        public Iterable<Key> keys() {
            ArrayList<Key> arr = new ArrayList<>();
            for (int i = 0; i < capacity; i++) {
                if (keys[i] != null) {
                    arr.add(keys[i]);
                }
            }
            return arr;
        }
    }
    
    class TestCase {
        public static void main(String[] args) {
            //无序符号表
            LinkedST<Integer, String> st = new LinkedST<>();
            st.put(3, "3..");
            st.put(7, "7..");
            st.put(64, "64..");
            st.put(23, "23..");
            st.put(11, "11..");
            st.delete(64);
            for (String e : st) {
                System.out.println(e);
            }
            System.out.println("=================");
            //有序符号表
            ArrayST<Integer, String> st2 = new ArrayST<>();
            st2.put(5, "5..");
            st2.put(2, "2..");
            st2.put(34, "34..");
            st2.put(17, "17..");
            st2.put(55, "55..");
            st2.put(214, "214..");
            st2.delete(34);
            System.out.println(st2.get(214));
            System.out.println(st2.size());
            st2.display();
            System.out.println("=================");
            //二叉树
            BinaryTree<Integer, String> tree = new BinaryTree<>();
            tree.put(12, "12..");
            tree.put(2, "2..");
            tree.put(34, "34..");
            tree.put(17, "17..");
            tree.put(55, "55..");
            tree.put(214, "214..");
            tree.display();
            System.out.println();
            tree.deleteMin();
            tree.delete(12);
            tree.delete(222);
            tree.delete(214);
            tree.display();
            System.out.println();
            System.out.println(tree.select(0));
            System.out.println(tree.rank(55, tree.root));
            System.out.println("=================");
            //红黑树
            System.out.println("------------------对二叉树的测试---------------------");
            RedBlackTree<Integer, String> blackRedTree = new RedBlackTree<>();
            blackRedTree.put(12, "12..");
            blackRedTree.put(2, "2..");
            blackRedTree.put(34, "34..");
            blackRedTree.put(17, "17..");
            blackRedTree.put(55, "55..");
            blackRedTree.put(214, "214..");
            blackRedTree.display();
            System.out.println();
            System.out.println("=================");
            //拉链法哈希表
            SeparateChainHashST<Integer, String> separateChainHashST = new SeparateChainHashST<>(100);
            separateChainHashST.put(12, "12..");
            separateChainHashST.put(2, "2..");
            separateChainHashST.put(34, "34..");
            separateChainHashST.put(17, "17..");
            separateChainHashST.put(55, "55..");
            separateChainHashST.put(214, "214..");
    
            separateChainHashST.put(12, "12..");
            separateChainHashST.put(2, "2..");
            separateChainHashST.put(34, "34..");
            separateChainHashST.put(17, "17..");
            separateChainHashST.put(55, "55..");
            separateChainHashST.put(214, "214..");
            separateChainHashST.display();
            System.out.println("====");
            separateChainHashST.delete(34);
            separateChainHashST.display();
            System.out.println("=====");
            System.out.println(separateChainHashST.get(17));
            System.out.println("===");
            System.out.println(separateChainHashST.size());
    
            //线性探测法哈希表
            System.out.println("-------------线性探测法哈希表----------------");
            LinearProbeHashST<Integer, String> linearProbeHashST = new LinearProbeHashST<>();
            linearProbeHashST.put(12, "12..");
            linearProbeHashST.put(2, "2..");
            linearProbeHashST.put(34, "34..");
            linearProbeHashST.put(17, "17..");
            linearProbeHashST.put(55, "55..");
            linearProbeHashST.put(214, "214..");
            for (Integer i : linearProbeHashST.keys()) {
                System.out.println(i);
            }
            System.out.println("delete key 34");
            System.out.println(linearProbeHashST.delete(34));
            System.out.println("show all keys");
            for (Integer i : linearProbeHashST.keys()) {
                System.out.println(i);
            }
            System.out.println("get value of key 55");
            System.out.println(linearProbeHashST.get(55));
        }
    }
  • 相关阅读:
    怎么修改android飞行模式wifi
    斐讯n1盒子装远程迅雷
    Spring使用大全
    面向对象7大设计原则
    Mybatis之SqlNode解析
    【转载】MongoDB的C#驱动程序教程
    【转载】 mongodb C# 基本类库
    【转载】列举MongoDB C#驱动的几个Query方法
    【转载】MongoDB开发学习
    【转载】sql全国省市区数据库建表过程
  • 原文地址:https://www.cnblogs.com/youzoulalala/p/11229010.html
Copyright © 2020-2023  润新知