一.接口自动化框架需求
1、接口编写方便。
2、方便调试接口。
3、支持数据初始化。
4、生成测试报告。
5、支持参数化。
### jemeter
# 优点
- 支持参数化
- 不需要写代码
# 缺点
- 创建接口用例效率不高。
- 不能生成查看每一个接口执行情况的测试报告。
# 结论
不考虑,接口编写不方便,最主要是不能生成测试报告,如果做接口性能的话可以考虑
###HttpRunner
优点:
- 基于YAML/JSON格式,专注于接口本身的编写。
- 接口编写简单
- 生成测试报告
- 接口录制功能。
缺点:
- 没有编辑器插件对语法校验,容易出错。
- 官方文档没有详细的说明。
- 扩展不方便。
# 总结
可以考虑,至于接口数据的初始化可能需要单独处理。
doc: https://cn.httprunner.org/quickstart/
####gauge
BDD行为驱动测试框架。
优点:
-
行为文件与脚本文件分离,本质上实现了数据驱动。
-
功能强大灵活,本质上还用Python写接口用例。
-
自动生成测试报告。
-
VS Code有支持插件
缺点:
-
门槛略高,需要了解BDD的用法。
-
需要会markdworn语法
行为描述文件:
## test post request * post "http://httpbin.org/post" interface |key | status_code| |------|-----------| |value1|200 | |value2|200 | |value3|200 |
测试脚本:
…… @step("post <url> interface <table>") def test_get_request(url, table): values = [] status_codes = [] for word in table.get_column_values_with_name("key"): values.append(word) for word in table.get_column_values_with_name("status_code"): status_codes.append(word) for i in range(len(values)): r = requests.post(url, data={"key": values[i]}) result = r.json() assert r.status_code == int(status_codes[i])
总结:推荐使用,BDD有一定门槛,看测试人员的学些能力和接受速度。
doc: https://docs.gauge.org/latest/writing-specifications.html#special-parameter-csv
#### Unittest+Request+HTMLRunner
利用现有的框架和库自己定制。
优点:
- 足够灵活强大: 分层测试、数据驱动、测试报告,集成CI...
缺点:
- 有一定的学习成本
数据文件:
{ "test_case1": { "key": "value1", "status_code": 200 }, "test_case2": { "key": "value2", "status_code": 200 }, "test_case3": { "key": "value3", "status_code": 200 }, "test_case4": { "key": "value4", "status_code": 200 }}
测试用例:
import requests import unittest from ddt import ddt, file_data @ddtclass InterfaceTest(unittest.TestCase): def setUp(self): self.url = "http://httpbin.org/post" def tearDown(self): print(self.result) @file_data("./data/test_data_dict.json") def test_post_request(self, key, status_code): r = requests.post(self.url, data={"key": key}) self.result = r.json() self.assertEqual(r.status_code, status_code)
总结:推荐使用,代码相对简单,功能足够灵活。
~~~~~~
虫师:
我花了两天时间整理这些框架,其实重点就是了解HttpRunner 和 gauge 。
yg
HttpRunner 没有编辑器插件,本身就是一个YAML/JSON配置文件,所以配置写错了,但只要是合法的YAML/JSON格式,也看不出来,只有运行的过后才知道。就像你用记事本写代码一样,只有运行了才知道代码有没有写错。
另外,扩展起来也不是特别方便,单独用python实现一些函数:在json文件中
{"device_sn": "${gen_random_string(15)}"}
以这样的方式引用gen_random_string()
函数。
gauge我已经分享过两篇基础文章了,虽然用BDD拿来做接口理念不搭,但并不是不可以,唯一的缺点是用BDD来描述接口行为不合适,其他的都没毛病,可以参数化,断言写起来也简单,测试报告也漂亮,本质上还是用Python实现一些功能,所以非常灵活。
unittest + requests + HTMLTestRunner是我最熟悉的方案,几乎没什么短板。以前通过这种方案写过很多测试用例,这次把ddt加上似乎更完美了。
重要:以上内容均来自网络,仅做自己学习使用。
原地址:https://www.cnblogs.com/fnng/p/9919803.html