• P3964 [TJOI2013]松鼠聚会 切比雪夫距离 转化 曼哈顿距离


    题意:

    \(n\)个点的切比雪夫距离和值的最小值

    切比雪夫距离:对于\(x_1,y_1,x_2,y_2\)定义两个点的切比雪夫距离为\(max(|x_1-x_2|,|y_1-y_2|)\)

    范围&性质:\(1\le n\le 10^5,-10^9\le x,y \le 10^9\)

    分析:

    首先我们先来了解一个小结论:

    枚举到\((0,0)\)点曼哈顿距离为1的点:

    \((1,0),(0,1),(-1,0),(0,-1),(0.5,0.5),(0.5,-0.5),(-0.5,-0.5),(-0.5,0.5)\)

    枚举到\((0,0)\)点切比雪夫距离为1的点:

    \((0,1),(1,1),(-1,1),(-1,-1),(0,-1),(1,-1),(1,0),(-1,0)\)

    将上述的点画在坐标系里可以得到两个正方形,且第二个是第一个向左旋转\(45^\circ\)后扩展2倍得到

    由此我们可以推得

    将一个点\((x,y)\)的坐标变为\((x+y,x−y)\)后,原坐标系中的曼哈顿距离 \(=\)新坐标系中的切比雪夫距离

    将一个点\((x,y)\)的坐标变为\((\frac {x+y}2,\frac {x-y}2)\) 后,原坐标系中的切比雪夫距离 \(=\) 新坐标系中的曼哈顿距离


    由以上结论我们可以将给定点的切比雪夫距离转化为曼哈顿距离,对于每一个点他的坐标变化为了\((gx,gy)\)

    由于曼哈顿距离有一个优越的性质:可以快速求多个点到一个点的距离和值,所以我们对于新的点进行排序

    记枚举的松鼠为\(k\),那么:

    \[ans= \sum_{i=1}^n dis(i,k)=\sum_{i=1}^n[ \;|gx_i-gx_k| \;+\; |gy_i-gy_k|\; ] \]

    化简得到

    \[ans=|gx_1-gx_k|+|gx_2-gx_k| \dots + +|gx_n-gx_k|+|gy_1-gy_k|+|gy_2-gy_k|\dots +|gy_n-gy_k| \]

    只要维护一下前缀和就可以将复杂度降到单次\(\omicron(1)\)

    代码:

    #include<bits/stdc++.h>
    
    using namespace std;
    
    namespace zzc
    {
    	const int maxn = 1e5+5;
    	long long x[maxn],y[maxn],nx[maxn],ny[maxn];
    	long long sumx[maxn],sumy[maxn];
    	long long ans,n;
    	
    	long long calc(long long i)
    	{
    		long long tmpx=lower_bound(nx+1,nx+n+1,x[i])-nx;
    		long long tmpy=lower_bound(ny+1,ny+n+1,y[i])-ny;
    		return ( (tmpx*x[i]-sumx[tmpx]+sumx[n]-sumx[tmpx]-(n-tmpx)*x[i]) ) + ( tmpy*y[i]-sumy[tmpy]+sumy[n]-sumy[tmpy]-(n-tmpy)*y[i] );
    	}
    	
    	void work()
    	{
    		scanf("%lld",&n);
    		for(long long i=1,a,b;i<=n;i++)
    		{
    			scanf("%lld%lld",&a,&b);
    			x[i]=nx[i]=a+b;
    			y[i]=ny[i]=a-b;
    		}
    		sort(nx+1,nx+n+1);
    		sort(ny+1,ny+n+1);
    		for(long long i=1;i<=n;i++)
    		{
    			sumx[i]=sumx[i-1]+nx[i];
    			sumy[i]=sumy[i-1]+ny[i];
    		}
    		
    		ans=0x7ffffffffffff;
    		for(long long i=1;i<=n;i++)
    		{
    			ans=min(ans,calc(i));
    		}
    		printf("%lld",ans>>1);
    	}
    	
    }
    
    int main()
    {
    	zzc::work();
    	return 0;
    }
    
  • 相关阅读:
    hdu 5648 DZY Loves Math 组合数+深搜(子集法)
    hdu 5647 DZY Loves Connecting 树形DP
    hdu 4550 卡片游戏 贪心
    hdu 5646 DZY Loves Partition 二分+数学分析+递推
    hdu 2196 Computer 树形DP
    poj 2342 Anniversary party 树形DP入门
    Vijos P1003 等价表达式 随机数+单调栈
    【BZOJ】1044: [HAOI2008]木棍分割 二分+区间DP
    【BZOJ】1925: [Sdoi2010]地精部落 DP+滚动数组
    【BZOJ】1012: [JSOI2008]最大数maxnumber 树状数组求区间最值
  • 原文地址:https://www.cnblogs.com/youth518/p/13650241.html
Copyright © 2020-2023  润新知