3787: Gty的文艺妹子序列
Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 186 Solved: 58
[Submit][Status][Discuss]
Description
Input
Output
对每个询问,单独输出一行,表示al...ar中的逆序对数。对每个询问,单独输出一行,表示al...ar中的逆序对数。
Sample Input
1 7 5 6 9 4 9 4 4 7
10
0 4 6
0 5 8
0 1 10
1 25 19
0 19 25
1 14 4
0 12 12
0 2 5
1 8 7
1 1 10
Sample Output
3
16
13
0
2
HINT
Source
又是分块,然后LincHpin给出了一个和PoPoQQQ很像的做法,我则选择另外的一种。客观地讲,两者的理论复杂度都是$O(Nsqrt{N}log(N))$,代码难度也都那样(不会太简单)。
大爷的方法
预处理
先分块,预处理块内逆序对,维护块内权值。然后G[i][j]表示第i块和第j块形成的逆序对,即统计了所有一个在第i块,一个在第j块的逆序对,这个也是一开始预处理一下,第一维暴力,第二维树状数组维护。因为妹子颜值的大小不会太大,所以可以开个数组E[i][j]表示前i块内颜值为j的妹子个数,简单与处理一下就有了。还需要用S[i][j]表示前i块内颜值小于等于j的妹子数量,类似于E[i][j]的前缀和,第一维暴力,第二维树状数组维护。
查询
查询区间分为两种:左右边界处的零碎妹子,中间块内的大把妹子。
零碎妹子内部暴力,和中间妹子产生的逆序对直接通过E,S数组求出来,复杂度$O(sqrt{N}log(N))$。
中间大把妹子也属于多个分块,先加上每个分块内部的逆序对,再加上$sum{G[i][j]}$,这个第一维暴力枚举,第二维在树状数组中查询,复杂度$O(sqrt{N}log(N))$。
修改
修改一个妹子的颜值时,块内逆序对的变化可以直接对块进行暴力重做,复杂度$O(sqrt{N}log(N))$,改变该块的权值线段树,$O(log(N))$。
考虑对G[i][j]的影响,只有$O(sqrt{N})$个G[i][j]包含该妹子(即该妹子所在的块),因为每个块维护了权值线段树,单个改动是$O(log(N))$的,所以总复杂度$O(sqrt{N}log(N))$。
考虑对E[i][j]的影响,只有$O(sqrt{N})$个E[i][j]需要改动,单个改动是$O(1)$的,总的复杂度是$O(sqrt{N})$。
考虑对S[i][j]的影响,只有$O(sqrt{N})$个E[i][j]需要改动,单个改动是$O(log(N))$的,总的复杂度是$O(sqrt{N}log(N))$。
蒟蒻(小生)的方法
基本的分块还是和大爷一样的,G[i][j]表示从第i块到第j块的区间内的逆序对数,用树状数组套主席树维护区间权值分布并支持单点修改。
查询就是直接取出中间的大把妹子,从G[i][j]中查询答案,暴力扫描两侧的零碎妹子,用权值主席树处理其和大把妹子产生的逆序对。
修改主要是考虑到G[i][j]的问题。大爷起初认为G[i][j]一共有N个,所以不能快速修改。但是发现可以这么考虑:
设修改妹子在块k
所有i<k的G都会被修改,暴力枚举一下i的话,对于一个i,只有满足j>k的G[i][j]才会被累加上i到k这一区间产生的改变量,对于一个i这是个区间加问题。
所有j>k的G都会被修改,暴力枚举一下j的话,对于一个j,只有满足i<k的G[i][j]才会被累加上k到j这一区间产生的改变量,对于一个j这是个区间加问题。
所以分开维护固定i,j时产生的改变量,做$O(sqrt{N})$次区间加(线段树或树状数组支持),每次取出G[i][j]的时候都额外查询一下[i][j]上的标记即可。
@Author: YouSiki