• BZOJ 3931: [CQOI2015]网络吞吐量


    3931: [CQOI2015]网络吞吐量

    Time Limit: 10 Sec  Memory Limit: 512 MB
    Submit: 1555  Solved: 637
    [Submit][Status][Discuss]

    Description

     路由是指通过计算机网络把信息从源地址传输到目的地址的活动,也是计算机网络设计中的重点和难点。网络中实现路由转发的硬件设备称为路由器。为了使数据包最快的到达目的地,路由器需要选择最优的路径转发数据包。例如在常用的路由算法OSPF(开放式最短路径优先)中,路由器会使用经典的Dijkstra算法计算最短路径,然后尽量沿最短路径转发数据包。现在,若已知一个计算机网络中各路由器间的连接情况,以及各个路由器的最大吞吐量(即每秒能转发的数据包数量),假设所有数据包一定沿最短路径转发,试计算从路由器1到路由器n的网络的最大吞吐量。计算中忽略转发及传输的时间开销,不考虑链路的带宽限制,即认为数据包可以瞬间通过网络。路由器1到路由器n作为起点和终点,自身的吞吐量不用考虑,网络上也不存在将1和n直接相连的链路。

     

    Input

    输入文件第一行包含两个空格分开的正整数n和m,分别表示路由器数量和链路的数量。网络中的路由器使用1到n编号。接下来m行,每行包含三个空格分开的正整数a、b和d,表示从路由器a到路由器b存在一条距离为d的双向链路。 接下来n行,每行包含一个正整数c,分别给出每一个路由器的吞吐量。

     

    Output

    输出一个整数,为题目所求吞吐量。

     

    Sample Input

    7 10
    1 2 2
    1 5 2
    2 4 1
    2 3 3
    3 7 1
    4 5 4
    4 3 1
    4 6 1
    5 6 2
    6 7 1
    1
    100
    20
    50
    20
    60
    1

    Sample Output

    70

    HINT

     对于100%的数据,n≤500,m≤100000,d,c≤10^9

    Source

     
    [Submit][Status][Discuss]

    分别从1和n点做单源最短路,即可求出哪些边出现在了从1到n的最短路上(最短路不一定唯一)。将这些边加入网络流中,对于原本的点拆点,入点向出点连限制吞吐量容量的边,跑最大流。注意Int64。

      1 #include <cstdio>
      2 #include <cstring>
      3 
      4 #define int long long
      5  
      6 inline int nextChar(void) {
      7     const int siz = 1024;
      8     static char buf[siz];
      9     static char *hd = buf + siz;
     10     static char *tl = buf + siz;
     11     if (hd == tl)
     12         fread(hd = buf, 1, siz, stdin);
     13     return *hd++;
     14 }
     15  
     16 inline int nextInt(void) {
     17     register int ret = 0;
     18     register int neg = false;
     19     register int bit = nextChar();
     20     for (; bit < 48; bit = nextChar())
     21         if (bit == '-')neg ^= true;
     22     for (; bit > 47; bit = nextChar())
     23         ret = ret * 10 + bit - 48;
     24     return neg ? -ret : ret;
     25 }
     26  
     27 const int inf = 2e18;
     28 const int siz = 1000005;
     29  
     30 int n, m;
     31  
     32 struct edge {
     33     int x, y, w;
     34 }e[siz];
     35  
     36 int lim[siz];
     37  
     38 namespace shortestPath 
     39 {
     40     int dis[2][siz];
     41      
     42     int edges;
     43     int hd[siz];
     44     int to[siz];
     45     int nt[siz];
     46     int vl[siz];
     47      
     48     inline void add(int u, int v, int w) {
     49         nt[edges] = hd[u]; to[edges] = v; vl[edges] = w; hd[u] = edges++;
     50         nt[edges] = hd[v]; to[edges] = u; vl[edges] = w; hd[v] = edges++;
     51     }
     52      
     53     inline void spfa(int *d, int s) {
     54         static int que[siz];
     55         static int inq[siz];
     56         static int head, tail;
     57         memset(inq, 0, sizeof(inq));
     58         for (int i = 0; i < siz; ++i)d[i] = inf;
     59         inq[que[head = d[s] = 0] = s] = tail = 1;
     60         while (head != tail) {
     61             int u = que[head++], v; inq[u] = 0;
     62             for (int i = hd[u]; ~i; i = nt[i])
     63                 if (d[v = to[i]] > d[u] + vl[i]) {
     64                     d[v] = d[u] + vl[i];
     65                     if (!inq[v])inq[que[tail++] = v] = 1;
     66                 }
     67         }
     68     }
     69      
     70     inline void solve(void) {
     71         memset(hd, -1, sizeof(hd));
     72         for (int i = 1; i <= m; ++i)
     73             add(e[i].x, e[i].y, e[i].w);
     74         spfa(dis[0], 1);
     75         spfa(dis[1], n);
     76     }
     77 }
     78  
     79 namespace networkFlow 
     80 {
     81     int s, t;
     82     int edges;
     83     int hd[siz];
     84     int to[siz];
     85     int nt[siz];
     86     int fl[siz];
     87      
     88     inline void add(int u, int v, int f) {
     89         nt[edges] = hd[u]; to[edges] = v; fl[edges] = f; hd[u] = edges++;
     90         nt[edges] = hd[v]; to[edges] = u; fl[edges] = 0; hd[v] = edges++;
     91     }
     92      
     93     int dep[siz];
     94      
     95     inline bool bfs(void) {
     96         static int que[siz], head, tail;
     97         memset(dep, 0, sizeof(dep));
     98         dep[que[head = 0] = s] = tail = 1;
     99         while (head != tail) {
    100             int u = que[head++], v;
    101             for (int i = hd[u]; ~i; i = nt[i])
    102                 if (fl[i] && !dep[v = to[i]])
    103                     dep[que[tail++] = v] = dep[u] + 1;
    104         }
    105         return dep[t];
    106     }
    107      
    108     int lst[siz];
    109      
    110     int dfs(int u, int f) {
    111         if (u == t || !f)return f;
    112         int used = 0, flow, v;
    113         for (int i = lst[u]; ~i; i = nt[i])
    114             if (dep[v = to[i]] == dep[u] + 1) {
    115                 flow = dfs(v, f - used < fl[i] ? f - used : fl[i]);
    116                 used += flow;
    117                 fl[i] -= flow;
    118                 fl[i^1] += flow;
    119                 if (fl[i])lst[u] = i;
    120                 if (used == f)return f;
    121             }
    122         if (!used)dep[u] = 0;
    123         return used;
    124     }
    125      
    126     inline int maxFlow(void) {
    127         int maxFlow = 0, newFlow;
    128         while (bfs()) {
    129             for (int i = s; i <= t; ++i)
    130                 lst[i] = hd[i];
    131             while (newFlow = dfs(s, inf))
    132                 maxFlow += newFlow;
    133         }
    134         return maxFlow;
    135     }
    136      
    137     inline void solve(void) {
    138         s = 0, t = (n + 1) << 1;
    139         memset(hd, -1, sizeof(hd));
    140         add(s, 1 << 1, inf);
    141         add(n << 1 | 1, t, inf);
    142         for (int i = 1; i <= n; ++i)
    143             add(i << 1, i << 1 | 1, lim[i]);
    144         for (int i = 1; i <= m; ++i) {
    145             int x, y, d = shortestPath::dis[0][n];
    146             x = shortestPath::dis[0][e[i].x];
    147             y = shortestPath::dis[1][e[i].y];
    148             if (x + y + e[i].w == d)
    149                 add(e[i].x << 1 | 1, e[i].y << 1, inf);
    150             x = shortestPath::dis[0][e[i].y];
    151             y = shortestPath::dis[1][e[i].x];
    152             if (x + y + e[i].w == d)
    153                 add(e[i].y << 1 | 1, e[i].x << 1, inf);
    154         }
    155         printf("%lld
    ", maxFlow());
    156     }
    157 }
    158  
    159 signed main(void) {
    160     n = nextInt();
    161     m = nextInt();
    162     for (int i = 1; i <= m; ++i)
    163         e[i].x = nextInt(),
    164         e[i].y = nextInt(),
    165         e[i].w = nextInt();
    166     for (int i = 1; i <= n; ++i)
    167         lim[i] = nextInt();
    168     lim[1] = lim[n] = inf;
    169     shortestPath::solve();
    170     networkFlow::solve();
    171 }

    @Author: YouSiki

  • 相关阅读:
    python 面向对象之路(1) 类和对象 三大特性 封装 继承 多态
    python 模块之路 异常处理基础 异常处理其他 报错处理
    python 模块之路 序列化 json pickle
    python 模块之路 random模块 时间模块 sys模块 os模块
    python 模块之路 re模块运用
    python -模块之路 正则表达式
    【Unity】粒子特效优化实践
    快速实现Low Poly地形
    【Unity】屏幕空间位置变换到世界空间位置的方法
    Substance Designer 使用手册
  • 原文地址:https://www.cnblogs.com/yousiki/p/6246542.html
Copyright © 2020-2023  润新知