• hdu 1028 Ignatius and the Princess III 简单dp


    题目链接:hdu 1028 Ignatius and the Princess III 

    题意:对于给定的n,问有多少种组成方式

    思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是dp[i][i]。那么dp[i][j]=dp[i][j-1]+dp[i-j][i-j],dp[i][j-1]是累加1到j-1的结果,dp[i-j][i-j]表示的就是最大为j,然后i-j有多少种表达方式啦。因为i-j可能大于j,这与我们定义的j为最大值矛盾,所以要去掉大于j的那些值

    /**************************************************************
        Problem:hdu 1028
        User: youmi
        Language: C++
        Result: Accepted
        Time:15MS
        Memory:1908K
    ****************************************************************/
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    //#include<bits/stdc++.h>
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <map>
    #include <stack>
    #include <set>
    #include <sstream>
    #include <cmath>
    #include <queue>
    #include <deque>
    #include <string>
    #include <vector>
    #define zeros(a) memset(a,0,sizeof(a))
    #define ones(a) memset(a,-1,sizeof(a))
    #define sc(a) scanf("%d",&a)
    #define sc2(a,b) scanf("%d%d",&a,&b)
    #define sc3(a,b,c) scanf("%d%d%d",&a,&b,&c)
    #define scs(a) scanf("%s",a)
    #define sclld(a) scanf("%I64d",&a)
    #define pt(a) printf("%d
    ",a)
    #define ptlld(a) printf("%I64d
    ",a)
    #define rep(i,from,to) for(int i=from;i<=to;i++)
    #define irep(i,to,from) for(int i=to;i>=from;i--)
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define lson (step<<1)
    #define rson (lson+1)
    #define eps 1e-6
    #define oo 0x3fffffff
    #define TEST cout<<"*************************"<<endl
    const double pi=4*atan(1.0);
    
    using namespace std;
    typedef long long ll;
    template <class T> inline void read(T &n)
    {
        char c; int flag = 1;
        for (c = getchar(); !(c >= '0' && c <= '9' || c == '-'); c = getchar()); if (c == '-') flag = -1, n = 0; else n = c - '0';
        for (c = getchar(); c >= '0' && c <= '9'; c = getchar()) n = n * 10 + c - '0'; n *= flag;
    }
    int Pow(int base, ll n, int mo)
    {
        if (n == 0) return 1;
        if (n == 1) return base % mo;
        int tmp = Pow(base, n >> 1, mo);
        tmp = (ll)tmp * tmp % mo;
        if (n & 1) tmp = (ll)tmp * base % mo;
        return tmp;
    }
    //***************************
    
    int n;
    const int maxn=200+10;
    ll dp[maxn][maxn];
    void init()
    {
        zeros(dp);
        dp[0][0]=1;
        rep(i,1,120)
        {
            rep(j,1,i)
            {
                dp[i][j]=dp[i][j-1]+dp[i-j][i-j];
                if(j<(i+1)/2)
                    dp[i][j]-=dp[i-j][i-j]-dp[i-j][j];
            }
        }
    }
    
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        #endif
        init();
        while(~sc(n))
        {
            ptlld(dp[n][n]);
        }
    }
    不为失败找借口,只为成功找方法
  • 相关阅读:
    初学C#线程
    初学C#线程二
    JQuery Ajax
    算法测试
    个人报告
    202120221课程设计第三周进展
    socket测试3
    202120221课程设计任务理解与分工
    嵌入式基础
    202120221课程设计第四周进展
  • 原文地址:https://www.cnblogs.com/youmi/p/5697812.html
Copyright © 2020-2023  润新知