• 谈谈fork/join实现原理


      害,又是一个炒冷饭的时间。fork/join是在jdk1.7中出现的一个并发工作包,其特点是可以将一个大的任务拆分成多个子任务进行并行处理,最后将子任务结果合并成最后的计算结果,并进行输出。从而达到多线程分发任务,达到高效处理的目的。

    1. 关于fork/join的一点想法

      以上说法,也许大家没什么感觉。但换个说法可能会更让人体会深切。总体上,相当于一个map阶段数据拆分,一个reduce阶段数据收集。即一个mapreduce过程,是不是有大数据的思想在了。只不过这fork/join的拆分难度可见性更大(自己手动拆,mapreduce由shuffle组件自动拆),另外fork/join是在一个机器上运行,而大数据的框架,则是在分布式系统中运行的。

      从这个点说来,好像研究fork/join就显得有些意义了。

      只是,按照fork/join的语义解释,是将任务拆分,然后处理,然后再合并结果。如果没有了合并结果这一步,那么,它就等同于线程池了,这也就是有人说它与线程池有啥差别的疑惑所在了。再说有需要收集结果的这一语义,其实我们也是可以通过线程池去执行任务,然后再用get()得到结果,然后在外部做合并,也是一样咯。

    2. fork/join的几个核心类

      fork/join被称作执行框架,自然不会是一个单一组件问题了。

      首先,它会有一个 ForkJoinPool, 相当于线程池, 所有的任务都要通过它来进行提交,然后由其进行统一调度。

      然后,每个任务都会有许多相同的代码,只有业务实现是不一样的,所以它会有一个基类: RecursiveTask . 实现上还有一个无返回结果的类:RecursiveAction, 只是没有返回结果时,往往又可能可以使用普通线程池执行替代了。(没有绝对)

      ForkJoinWorkerThreadFactory, 是fork/join框架的线程工厂类,原本含义与普通的线程工厂类一致,只是它的入参不再是一个个 Runnable 任务,而是 ForkJoinPool, 因为它们所处的上下文是不一样的。

      ForkJoinWorkerThread, 执行fork/join的具体线程,它可能在执行过程中,再去主动添加task。而它自身拥有一个队列,它的主要任务就是获取队列任务,然后执行。但当其自身的队列完成时,它可以通过work-steal算法窃取其他线程的队列任务。这也是fork/join的核心所在。

      sun.misc.Unsafe, 之所以要提到这个jdk类,是因为在fork/join框架中,对于队列的管理,不是通过普通的list或数组来实现,而是通过 U.putOrderedObject(a, j, task); 来存放,虽然效果与数组是一样的,但它会更简单地实现线程安全的操作。只是,其中有许多的位操作,值得学习的同时,也显得有些麻烦了。

    3. fork/join使用样例

      我们通过对一个数组的排序过程,使用fork/join来实现看看如何使用这框架。尤其对于大数组的排序,显得还是有用的。这种大数组的排序,一般都会使用快速排序或者归并排序来处理。此处使用fork/join框架来处理,也是暗合了归并排序的道理了。

    import java.util.Arrays;
    import java.util.Random;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.ForkJoinPool;
    import java.util.concurrent.ForkJoinTask;
    import java.util.concurrent.RecursiveTask;
    
    /**
     * Fork/join框架测试
     */
    public class TestForkJoinFramework {
    
        public static void main(String[] args) {
            long beginTime = System.currentTimeMillis();
            ForkJoinPool pool = new ForkJoinPool();
            int mockArrLen = 1000_0000;
            int[] arr = new int[mockArrLen];
            Random r = new Random();
            for (int index = 1; index <= mockArrLen; index++) {
                arr[index - 1] = r.nextInt(1000_0000);
            }
            FJOrderTask task = new FJOrderTask(arr);
            ForkJoinTask<int[]> taskResult = pool.submit(task);
            try {
                // 等待结果完成
                taskResult.get();
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
            long endTime = System.currentTimeMillis();
            System.out.println("耗时=" + (endTime - beginTime));
        }
    
        /**
         * 单个排序的子任务
         */
        private static class FJOrderTask extends RecursiveTask<int[]> {
    
            /**
             * 当前排序的数组值
             */
            private final int[] source;
    
            public FJOrderTask(int[] source) {
                this.source = source;
            }
    
            /**
             * 真正的业务计算逻辑
             *
             * @see java.util.concurrent.RecursiveTask#compute()
             */
            @Override
            protected int[] compute() {
                int sourceLen = source.length;
                // 如果条件成立,说明任务中要进行排序的集合还不够小
                System.out.println(Thread.currentThread());
                if (sourceLen > 2) {
                    int midIndex = sourceLen / 2;
                    // 拆分成两个子任务, 0 -> mid - 1, mid -> len
                    FJOrderTask task1 = new FJOrderTask(
                            Arrays.copyOf(source, midIndex));
                    task1.fork();
                    FJOrderTask task2 = new FJOrderTask(
                            Arrays.copyOfRange(source, midIndex, sourceLen));
                    task2.fork();
                    // 将两个有序的数组,合并成一个有序的数组
                    int[] result1 = task1.join();
                    int[] result2 = task2.join();
                    return insertMerge(result1, result2);
                }
                // 否则说明集合中只有一个或者两个元素,可以进行这两个元素的比较排序了
                else {
                    // 如果条件成立,说明数组中只有一个元素,或者是数组中的元素都已经排列好位置了
                    if (sourceLen == 1
                            || source[0] <= source[1]) {
                        return source;
                    } else {
                        int[] orderedArr = new int[sourceLen];
                        orderedArr[0] = source[1];
                        orderedArr[1] = source[0];
                        return orderedArr;
                    }
                }
            }
    
            /**
             * 使用插入排序,将两个有序数组合并起来
             *
             * @param arr1 有序数组1
             * @param arr2 有序数组2
             * @return 合并后的有序数组
             */
            private int[] insertMerge(int[] arr1, int[] arr2) {
                int[] result = new int[arr1.length + arr2.length];
                int arr1Len = arr1.length;
                int arr2Len = arr2.length;
                int destLen = result.length;
                // 简单插入排序
                for (int i = 0, array1Index = 0, array2Index = 0; i < destLen; i++) {
                    int value1 = array1Index >= arr1Len
                            ? Integer.MAX_VALUE : arr1[array1Index];
                    int value2 = array2Index >= arr2Len
                            ? Integer.MAX_VALUE : arr2[array2Index];
                    if (value1 < value2) {
                        array1Index++;
                        result[i] = value1;
                    }
                    else {
                        array2Index++;
                        result[i] = value2;
                    }
                }
                return result;
            }
    
        }
    }

      思路很简单,就是将数组一直拆分,直到最后一个或者两个时,从最下面来开始排序,然后依次往上回溯,使用插入排序归并结果集,最终返回排好序的值。如果除去任务拆分的过程,则时间复杂度还是非常好的 O(nlog(n)), 只是这任务拆分的过程,需要大量的空间复杂度,也不见得是什么好事。且不管它。

    4. fork/join框架的实现原理


      我们以上面的demo为出发点,观察fork/join的工作过程,不知道100%,也八九不离十了。上面主要有几个动作,一ForkJoinPool实例化,submit一个Task, get()等待最终结果完成。这三个看得见的动作好办,只是其核心也许还在背后。

    4.1. ForkJoinPool构造器

      每个要调用框架的应用,必先初始化一个pool实例,这是自然。如上使用无参构造器,实际上是使用了框架的各种默认值而已, 这种默认值往往是能够满足大部分的场景的,从而体现其易用性。

        // java.util.concurrent.ForkJoinPool#ForkJoinPool()
        /**
         * Creates a {@code ForkJoinPool} with parallelism equal to {@link
         * java.lang.Runtime#availableProcessors}, using the {@linkplain
         * #defaultForkJoinWorkerThreadFactory default thread factory},
         * no UncaughtExceptionHandler, and non-async LIFO processing mode.
         *
         * @throws SecurityException if a security manager exists and
         *         the caller is not permitted to modify threads
         *         because it does not hold {@link
         *         java.lang.RuntimePermission}{@code ("modifyThread")}
         */
        public ForkJoinPool() {
            // 并行度默认是cpu的核数
            this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
                 defaultForkJoinWorkerThreadFactory, null, false);
        }
        /**
         * Creates a {@code ForkJoinPool} with the given parameters.
         *
         * @param parallelism the parallelism level. For default value,
         * use {@link java.lang.Runtime#availableProcessors}.
         * @param factory the factory for creating new threads. For default value,
         * use {@link #defaultForkJoinWorkerThreadFactory}.
         * @param handler the handler for internal worker threads that
         * terminate due to unrecoverable errors encountered while executing
         * tasks. For default value, use {@code null}.
         * @param asyncMode if true,
         * establishes local first-in-first-out scheduling mode for forked
         * tasks that are never joined. This mode may be more appropriate
         * than default locally stack-based mode in applications in which
         * worker threads only process event-style asynchronous tasks.
         * For default value, use {@code false}.
         * @throws IllegalArgumentException if parallelism less than or
         *         equal to zero, or greater than implementation limit
         * @throws NullPointerException if the factory is null
         * @throws SecurityException if a security manager exists and
         *         the caller is not permitted to modify threads
         *         because it does not hold {@link
         *         java.lang.RuntimePermission}{@code ("modifyThread")}
         */
        public ForkJoinPool(int parallelism,
                            ForkJoinWorkerThreadFactory factory,
                            UncaughtExceptionHandler handler,
                            boolean asyncMode) {
            this(checkParallelism(parallelism),
                 checkFactory(factory),
                 handler,
                 // FIFO_QUEUE = 1 << 16, LIFO_QUEUE = 0
                 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
                 "ForkJoinPool-" + nextPoolId() + "-worker-");
            checkPermission();
        }
        /**
         * Creates a {@code ForkJoinPool} with the given parameters, without
         * any security checks or parameter validation.  Invoked directly by
         * makeCommonPool.
         */
        private ForkJoinPool(int parallelism,
                             ForkJoinWorkerThreadFactory factory,
                             UncaughtExceptionHandler handler,
                             int mode,
                             String workerNamePrefix) {
            this.workerNamePrefix = workerNamePrefix;
            this.factory = factory;
            this.ueh = handler;
            this.config = (parallelism & SMASK) | mode;
            long np = (long)(-parallelism); // offset ctl counts
            this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
        }

      构造器自然没啥好说的,就是设置几个并行度,初始化线程工厂,标识等等。为下文做准备。

    4.2. 任务submit过程


      上面的例子中,submit只有一次调用,而实际应用中则不一定。但即使如此,一次submit, 其实背后也是有许多的动作的。因为这一个task里,又会生出许多task来。

        // java.util.concurrent.ForkJoinPool#submit
        /**
         * Submits a ForkJoinTask for execution.
         *
         * @param task the task to submit
         * @param <T> the type of the task's result
         * @return the task
         * @throws NullPointerException if the task is null
         * @throws RejectedExecutionException if the task cannot be
         *         scheduled for execution
         */
        public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
            if (task == null)
                throw new NullPointerException();
            // submit主要是向pool中加入任务队列
            externalPush(task);
            return task;
        }
        /**
         * Tries to add the given task to a submission queue at
         * submitter's current queue. Only the (vastly) most common path
         * is directly handled in this method, while screening for need
         * for externalSubmit.
         *
         * @param task the task. Caller must ensure non-null.
         */
        final void externalPush(ForkJoinTask<?> task) {
            WorkQueue[] ws; WorkQueue q; int m;
            int r = ThreadLocalRandom.getProbe();
            int rs = runState;
            // 如果线程不是第一次进入,且获得锁,则直接放队列即可
            // 否则走普通加入队列逻辑
            if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
                (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
                ForkJoinTask<?>[] a; int am, n, s;
                if ((a = q.array) != null &&
                    (am = a.length - 1) > (n = (s = q.top) - q.base)) {
                    int j = ((am & s) << ASHIFT) + ABASE;
                    // 通过 putOrderedObject 添加任务到队列中
                    U.putOrderedObject(a, j, task);
                    U.putOrderedInt(q, QTOP, s + 1);
                    U.putIntVolatile(q, QLOCK, 0);
                    if (n <= 1)
                        signalWork(ws, q);
                    return;
                }
                U.compareAndSwapInt(q, QLOCK, 1, 0);
            }
            // 初始化时的submit或者通用 submit
            externalSubmit(task);
        }
        
        /**
         * Full version of externalPush, handling uncommon cases, as well
         * as performing secondary initialization upon the first
         * submission of the first task to the pool.  It also detects
         * first submission by an external thread and creates a new shared
         * queue if the one at index if empty or contended.
         *
         * @param task the task. Caller must ensure non-null.
         */
        private void externalSubmit(ForkJoinTask<?> task) {
            int r;                                    // initialize caller's probe
            if ((r = ThreadLocalRandom.getProbe()) == 0) {
                ThreadLocalRandom.localInit();
                r = ThreadLocalRandom.getProbe();
            }
            for (;;) {
                WorkQueue[] ws; WorkQueue q; int rs, m, k;
                boolean move = false;
                // 停止运行
                if ((rs = runState) < 0) {
                    tryTerminate(false, false);     // help terminate
                    throw new RejectedExecutionException();
                }
                // 未被初始化,先执行初始化
                else if ((rs & STARTED) == 0 ||     // initialize
                         ((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
                    int ns = 0;
                    // 上锁初始化
                    rs = lockRunState();
                    try {
                        if ((rs & STARTED) == 0) {
                            U.compareAndSwapObject(this, STEALCOUNTER, null,
                                                   new AtomicLong());
                            // create workQueues array with size a power of two
                            int p = config & SMASK; // ensure at least 2 slots
                            int n = (p > 1) ? p - 1 : 1;
                            n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
                            n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
                            // 队列数量初始化
                            workQueues = new WorkQueue[n];
                            ns = STARTED;
                        }
                    } finally {
                        unlockRunState(rs, (rs & ~RSLOCK) | ns);
                    }
                }
                // 当前线程已添加过队列
                else if ((q = ws[k = r & m & SQMASK]) != null) {
                    // 上锁添加到队列中
                    if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
                        ForkJoinTask<?>[] a = q.array;
                        // 取出栈顶指针,向其中放入任务
                        int s = q.top;
                        boolean submitted = false; // initial submission or resizing
                        try {                      // locked version of push
                            if ((a != null && a.length > s + 1 - q.base) ||
                                (a = q.growArray()) != null) {
                                int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
                                U.putOrderedObject(a, j, task);
                                U.putOrderedInt(q, QTOP, s + 1);
                                submitted = true;
                            }
                        } finally {
                            U.compareAndSwapInt(q, QLOCK, 1, 0);
                        }
                        // 如果队列添加成功,则唤醒一个 worker, 返回
                        // 否则进入下一次尝试添加过程
                        if (submitted) {
                            signalWork(ws, q);
                            return;
                        }
                    }
                    move = true;                   // move on failure
                }
                else if (((rs = runState) & RSLOCK) == 0) { // create new queue
                    q = new WorkQueue(this, null);
                    q.hint = r;
                    q.config = k | SHARED_QUEUE;
                    q.scanState = INACTIVE;
                    rs = lockRunState();           // publish index
                    if (rs > 0 &&  (ws = workQueues) != null &&
                        k < ws.length && ws[k] == null)
                        ws[k] = q;                 // else terminated
                    unlockRunState(rs, rs & ~RSLOCK);
                }
                else
                    move = true;                   // move if busy
                // 如有必要,为当前线程生成新的标识
                if (move)
                    r = ThreadLocalRandom.advanceProbe(r);
            }
        }

      由上可知,submit主要初始化队列以及向队列中添加任务,并在唤醒worker处理任务。但实际上,worker Thread 我们还没有看到被激活,只是看到有队workQueue的初始化。那么,worker又是在哪进行初始化的呢?只可能是在 signal 的时候了。

    4.3. worker的初始化

      worker是真正执行任务的线程,前面光看到添加队列,以及唤醒worker了。只是这时还未见worker被初始化,实际上它是在被唤醒的逻辑中进行初始化的。

        // java.util.concurrent.ForkJoinPool#signalWork
        /**
         * Tries to create or activate a worker if too few are active.
         *
         * @param ws the worker array to use to find signallees
         * @param q a WorkQueue --if non-null, don't retry if now empty
         */
        final void signalWork(WorkQueue[] ws, WorkQueue q) {
            long c; int sp, i; WorkQueue v; Thread p;
            while ((c = ctl) < 0L) {                       // too few active,一个标识,分两段使用,低位为0代表worker还可以添加
                if ((sp = (int)c) == 0) {                  // no idle workers
                    if ((c & ADD_WORKER) != 0L)            // too few workers
                        tryAddWorker(c);
                    break;
                }
                if (ws == null)                            // unstarted/terminated
                    break;
                if (ws.length <= (i = sp & SMASK))         // terminated
                    break;
                if ((v = ws[i]) == null)                   // terminating
                    break;
                int vs = (sp + SS_SEQ) & ~INACTIVE;        // next scanState
                int d = sp - v.scanState;                  // screen CAS
                long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
                if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
                    v.scanState = vs;                      // activate v
                    if ((p = v.parker) != null)
                        U.unpark(p);
                    break;
                }
                if (q != null && q.base == q.top)          // no more work
                    break;
            }
        }
    
        /**
         * Tries to add one worker, incrementing ctl counts before doing
         * so, relying on createWorker to back out on failure.
         *
         * @param c incoming ctl value, with total count negative and no
         * idle workers.  On CAS failure, c is refreshed and retried if
         * this holds (otherwise, a new worker is not needed).
         */
        private void tryAddWorker(long c) {
            boolean add = false;
            do {
                long nc = ((AC_MASK & (c + AC_UNIT)) |
                           (TC_MASK & (c + TC_UNIT)));
                if (ctl == c) {
                    int rs, stop;                 // check if terminating
                    if ((stop = (rs = lockRunState()) & STOP) == 0)
                        add = U.compareAndSwapLong(this, CTL, c, nc);
                    unlockRunState(rs, rs & ~RSLOCK);
                    if (stop != 0)
                        break;
                    // 添加标识成功,再创建worker
                    if (add) {
                        createWorker();
                        break;
                    }
                }
            } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
        }
    
        /**
         * Tries to construct and start one worker. Assumes that total
         * count has already been incremented as a reservation.  Invokes
         * deregisterWorker on any failure.
         *
         * @return true if successful
         */
        private boolean createWorker() {
            ForkJoinWorkerThreadFactory fac = factory;
            Throwable ex = null;
            ForkJoinWorkerThread wt = null;
            try {
                // 调用线程工厂创建新的worker, 并立即启动worker
                if (fac != null && (wt = fac.newThread(this)) != null) {
                    wt.start();
                    return true;
                }
            } catch (Throwable rex) {
                ex = rex;
            }
            // 创建失败,处理异常
            deregisterWorker(wt, ex);
            return false;
        }
        /**
         * Default ForkJoinWorkerThreadFactory implementation; creates a
         * new ForkJoinWorkerThread.
         */
        static final class DefaultForkJoinWorkerThreadFactory
            implements ForkJoinWorkerThreadFactory {
            public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
                return new ForkJoinWorkerThread(pool);
            }
        }

      果然在signal时,创建worker。值得一提的,为了实现安全地添加worker,它会先更新成功ctl,然后再执行真正的create操作。避免多创建出worker来。

    4.4. worker的工作原理

      前面看到worker创建过程,传入了pool的实例,即当前上下文都是被worker可见的。所以,它能很好地复用当前的配置信息,而它自身是一个异步线程,在创建之后,立即被启动起来了。那它后续则必然尝试从队列获取任务,进行执行了。具体如何?

    1. WorkerThread 构造方法

        // java.util.concurrent.ForkJoinWorkerThread#ForkJoinWorkerThread
        /**
         * Creates a ForkJoinWorkerThread operating in the given pool.
         *
         * @param pool the pool this thread works in
         * @throws NullPointerException if pool is null
         */
        protected ForkJoinWorkerThread(ForkJoinPool pool) {
            // Use a placeholder until a useful name can be set in registerWorker
            super("aForkJoinWorkerThread");
            this.pool = pool;
            // workQueue 临时向 pool 中进行注册所得
            this.workQueue = pool.registerWorker(this);
        }
        
        /**
         * Callback from ForkJoinWorkerThread constructor to establish and
         * record its WorkQueue.
         *
         * @param wt the worker thread
         * @return the worker's queue
         */
        final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
            UncaughtExceptionHandler handler;
            wt.setDaemon(true);                           // configure thread
            if ((handler = ueh) != null)
                wt.setUncaughtExceptionHandler(handler);
            WorkQueue w = new WorkQueue(this, wt);
            int i = 0;                                    // assign a pool index
            int mode = config & MODE_MASK;
            int rs = lockRunState();
            try {
                WorkQueue[] ws; int n;                    // skip if no array
                if ((ws = workQueues) != null && (n = ws.length) > 0) {
                    int s = indexSeed += SEED_INCREMENT;  // unlikely to collide
                    int m = n - 1;
                    i = ((s << 1) | 1) & m;               // odd-numbered indices
                    if (ws[i] != null) {                  // collision
                        int probes = 0;                   // step by approx half n
                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
                        while (ws[i = (i + step) & m] != null) {
                            if (++probes >= n) {
                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
                                m = n - 1;
                                probes = 0;
                            }
                        }
                    }
                    w.hint = s;                           // use as random seed
                    w.config = i | mode;
                    w.scanState = i;                      // publication fence
                    ws[i] = w;
                }
            } finally {
                unlockRunState(rs, rs & ~RSLOCK);
            }
            wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
            return w;
        }

      重点则是在 pool 中注册自身,得到一个 workQueue. 而其具体业务,则是在run方法中实现。

        // java.util.concurrent.ForkJoinWorkerThread#run
        /**
         * This method is required to be public, but should never be
         * called explicitly. It performs the main run loop to execute
         * {@link ForkJoinTask}s.
         */
        public void run() {
            if (workQueue.array == null) { // only run once
                Throwable exception = null;
                try {
                    onStart();
                    pool.runWorker(workQueue);
                } catch (Throwable ex) {
                    exception = ex;
                } finally {
                    try {
                        onTermination(exception);
                    } catch (Throwable ex) {
                        if (exception == null)
                            exception = ex;
                    } finally {
                        pool.deregisterWorker(this, exception);
                    }
                }
            }
        }
        // java.util.concurrent.ForkJoinPool#runWorker
        /**
         * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
         */
        final void runWorker(WorkQueue w) {
            w.growArray();                   // allocate queue
            int seed = w.hint;               // initially holds randomization hint
            int r = (seed == 0) ? 1 : seed;  // avoid 0 for xorShift
            for (ForkJoinTask<?> t;;) {
                // 取任务,执行
                if ((t = scan(w, r)) != null)
                    w.runTask(t);
                else if (!awaitWork(w, r))
                    break;
                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
            }
        }
    
            /**
             * Executes the given task and any remaining local tasks.
             */
            final void runTask(ForkJoinTask<?> task) {
                if (task != null) {
                    scanState &= ~SCANNING; // mark as busy
                    (currentSteal = task).doExec();
                    U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
                    execLocalTasks();
                    ForkJoinWorkerThread thread = owner;
                    if (++nsteals < 0)      // collect on overflow
                        transferStealCount(pool);
                    scanState |= SCANNING;
                    if (thread != null)
                        thread.afterTopLevelExec();
                }
            }
        // java.util.concurrent.ForkJoinTask#doExec
        /**
         * Primary execution method for stolen tasks. Unless done, calls
         * exec and records status if completed, but doesn't wait for
         * completion otherwise.
         *
         * @return status on exit from this method
         */
        final int doExec() {
            int s; boolean completed;
            if ((s = status) >= 0) {
                try {
                    completed = exec();
                } catch (Throwable rex) {
                    return setExceptionalCompletion(rex);
                }
                if (completed)
                    s = setCompletion(NORMAL);
            }
            return s;
        }
        // java.util.concurrent.RecursiveTask#exec
        /**
         * Implements execution conventions for RecursiveTask.
         */
        protected final boolean exec() {
            // 即调用具体业务类的 compute 方法
            result = compute();
            return true;
        }

      咱们草草看了 worker 如何运行任务。这和线程池没多少差别,大致仍是从队列获取任务,然后执行业务方法compute . 我们暂时略去了如何获取任务,以及如何执行work-steal了。且看下节。

    4.5. 任务获取实现

      主要是通过scan处理。

        // java.util.concurrent.ForkJoinPool#scan
        /**
         * Scans for and tries to steal a top-level task. Scans start at a
         * random location, randomly moving on apparent contention,
         * otherwise continuing linearly until reaching two consecutive
         * empty passes over all queues with the same checksum (summing
         * each base index of each queue, that moves on each steal), at
         * which point the worker tries to inactivate and then re-scans,
         * attempting to re-activate (itself or some other worker) if
         * finding a task; otherwise returning null to await work.  Scans
         * otherwise touch as little memory as possible, to reduce
         * disruption on other scanning threads.
         *
         * @param w the worker (via its WorkQueue)
         * @param r a random seed
         * @return a task, or null if none found
         */
        private ForkJoinTask<?> scan(WorkQueue w, int r) {
            WorkQueue[] ws; int m;
            if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
                int ss = w.scanState;                     // initially non-negative
                for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
                    WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
                    int b, n; long c;
                    // 首次获取时,是从自身队列中获取
                    if ((q = ws[k]) != null) {
                        if ((n = (b = q.base) - q.top) < 0 &&
                            (a = q.array) != null) {      // non-empty
                            long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
                            if ((t = ((ForkJoinTask<?>)
                                      U.getObjectVolatile(a, i))) != null &&
                                q.base == b) {
                                if (ss >= 0) {
                                    if (U.compareAndSwapObject(a, i, t, null)) {
                                        q.base = b + 1;
                                        if (n < -1)       // signal others
                                            signalWork(ws, q);
                                        return t;
                                    }
                                }
                                else if (oldSum == 0 &&   // try to activate
                                         w.scanState < 0)
                                    tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
                            }
                            if (ss < 0)                   // refresh
                                ss = w.scanState;
                            r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
                            origin = k = r & m;           // move and rescan
                            oldSum = checkSum = 0;
                            continue;
                        }
                        checkSum += b;
                    }
                    if ((k = (k + 1) & m) == origin) {    // continue until stable
                        if ((ss >= 0 || (ss == (ss = w.scanState))) &&
                            oldSum == (oldSum = checkSum)) {
                            if (ss < 0 || w.qlock < 0)    // already inactive
                                break;
                            int ns = ss | INACTIVE;       // try to inactivate
                            long nc = ((SP_MASK & ns) |
                                       (UC_MASK & ((c = ctl) - AC_UNIT)));
                            w.stackPred = (int)c;         // hold prev stack top
                            U.putInt(w, QSCANSTATE, ns);
                            if (U.compareAndSwapLong(this, CTL, c, nc))
                                ss = ns;
                            else
                                w.scanState = ss;         // back out
                        }
                        checkSum = 0;
                    }
                }
            }
            return null;
        }

      要安全高效地实现一个获取队列还是不易啊。

    4.6. task.fork 实现

      一般地,能用上fork一词的场景,一般是对于当前环境的一个copy. 难道这里的fork也是这样吗?新开一个线程?不然又是如何找到需要处理的队列的呢?

        // java.util.concurrent.ForkJoinTask#fork
        /**
         * Arranges to asynchronously execute this task in the pool the
         * current task is running in, if applicable, or using the {@link
         * ForkJoinPool#commonPool()} if not {@link #inForkJoinPool}.  While
         * it is not necessarily enforced, it is a usage error to fork a
         * task more than once unless it has completed and been
         * reinitialized.  Subsequent modifications to the state of this
         * task or any data it operates on are not necessarily
         * consistently observable by any thread other than the one
         * executing it unless preceded by a call to {@link #join} or
         * related methods, or a call to {@link #isDone} returning {@code
         * true}.
         *
         * @return {@code this}, to simplify usage
         */
        public final ForkJoinTask<V> fork() {
            Thread t;
            // ForkJoinWorkerThread 中持有workQueue实例,可直接向其添加任务
            if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
                ((ForkJoinWorkerThread)t).workQueue.push(this);
            else
                // 如果是外部线程,则添加到一共享pool中即可,后续将其各空闲线程处理
                ForkJoinPool.common.externalPush(this);
            return this;
        }
            // java.util.concurrent.ForkJoinPool.WorkQueue#push
            /**
             * Pushes a task. Call only by owner in unshared queues.  (The
             * shared-queue version is embedded in method externalPush.)
             *
             * @param task the task. Caller must ensure non-null.
             * @throws RejectedExecutionException if array cannot be resized
             */
            final void push(ForkJoinTask<?> task) {
                ForkJoinTask<?>[] a; ForkJoinPool p;
                int b = base, s = top, n;
                if ((a = array) != null) {    // ignore if queue removed
                    int m = a.length - 1;     // fenced write for task visibility
                    U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
                    U.putOrderedInt(this, QTOP, s + 1);
                    if ((n = s - b) <= 1) {
                        if ((p = pool) != null)
                            p.signalWork(p.workQueues, this);
                    }
                    else if (n >= m)
                        growArray();
                }
            }
    
    /**
     * A thread managed by a {@link ForkJoinPool}, which executes
     * {@link ForkJoinTask}s.
     * This class is subclassable solely for the sake of adding
     * functionality -- there are no overridable methods dealing with
     * scheduling or execution.  However, you can override initialization
     * and termination methods surrounding the main task processing loop.
     * If you do create such a subclass, you will also need to supply a
     * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to
     * {@linkplain ForkJoinPool#ForkJoinPool use it} in a {@code ForkJoinPool}.
     *
     * @since 1.7
     * @author Doug Lea
     */
    public class ForkJoinWorkerThread extends Thread {
        /*
         * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
         * ForkJoinTasks. For explanation, see the internal documentation
         * of class ForkJoinPool.
         *
         * This class just maintains links to its pool and WorkQueue.  The
         * pool field is set immediately upon construction, but the
         * workQueue field is not set until a call to registerWorker
         * completes. This leads to a visibility race, that is tolerated
         * by requiring that the workQueue field is only accessed by the
         * owning thread.
         *
         * Support for (non-public) subclass InnocuousForkJoinWorkerThread
         * requires that we break quite a lot of encapsulation (via Unsafe)
         * both here and in the subclass to access and set Thread fields.
         */
    
        final ForkJoinPool pool;                // the pool this thread works in
        final ForkJoinPool.WorkQueue workQueue; // work-stealing mechanics
        ...
    }

      可见,fork的过程,即是向当前线程中添加当前任务而已,并没有所谓的上下文copy过程。

    4.7. task.join 实现

      join的语义是,等待任务完成后返回。与 Thread.join()一致。只是有一个问题,即如果某个线程阻塞等待结果去了,那当前线程自然就相当于无法再被利用了。那后续的任务又何从谈起呢?想来只有递归能够解决这个问题了。但是递归往往又是在单线程中完成的,这岂不无法利用并发特性了?

      实际上,之所以被分作fork/join两个步骤,意义就是在这。上一节我们看到,fork的过程是向队列中添加了任务,随后就返回了。这时,如果当前worker比较繁忙(在做任务拆分),则这些任务就会被其他worker窃取过去处理了。而其他任务在处理时,又会遇到自己的递归,从而将一个单线程的递归变为多线程的递归了。

      下面我们主要看一个线程的递归过程。join的本义只是等待当前任务完成,但是当前任务完成又要依赖于其子任务完成join, 子任务又要等待其子任务join, 因此形成递归。而join()返回的表象是compute()完成,所以这过程其实是伴随着compute的运算的。

        // java.util.concurrent.ForkJoinTask#join
        /**
         * Returns the result of the computation when it {@link #isDone is
         * done}.  This method differs from {@link #get()} in that
         * abnormal completion results in {@code RuntimeException} or
         * {@code Error}, not {@code ExecutionException}, and that
         * interrupts of the calling thread do <em>not</em> cause the
         * method to abruptly return by throwing {@code
         * InterruptedException}.
         *
         * @return the computed result
         */
        public final V join() {
            int s;
            if ((s = doJoin() & DONE_MASK) != NORMAL)
                reportException(s);
            // 任务完成后,主动获取结果
            return getRawResult();
        }
        /**
         * Throws exception, if any, associated with the given status.
         */
        private void reportException(int s) {
            if (s == CANCELLED)
                throw new CancellationException();
            if (s == EXCEPTIONAL)
                rethrow(getThrowableException());
        }
        // java.util.concurrent.RecursiveTask#getRawResult
        public final V getRawResult() {
            return result;
        }
    
    
        /**
         * Implementation for join, get, quietlyJoin. Directly handles
         * only cases of already-completed, external wait, and
         * unfork+exec.  Others are relayed to ForkJoinPool.awaitJoin.
         *
         * @return status upon completion
         */
        private int doJoin() {
            int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
            return (s = status) < 0 ? s :
                ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
                // 取当前任务执行, doExec 执行任务,awaitJoin 等待执行完成
                (w = (wt = (ForkJoinWorkerThread)t).workQueue).
                tryUnpush(this) && (s = doExec()) < 0 ? s :
                wt.pool.awaitJoin(w, this, 0L) :
                externalAwaitDone();
        }
    
        // java.util.concurrent.ForkJoinPool#awaitJoin
        /**
         * Helps and/or blocks until the given task is done or timeout.
         *
         * @param w caller
         * @param task the task
         * @param deadline for timed waits, if nonzero
         * @return task status on exit
         */
        final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
            int s = 0;
            if (task != null && w != null) {
                ForkJoinTask<?> prevJoin = w.currentJoin;
                U.putOrderedObject(w, QCURRENTJOIN, task);
                CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
                    (CountedCompleter<?>)task : null;
                for (;;) {
                    if ((s = task.status) < 0)
                        break;
                    if (cc != null)
                        helpComplete(w, cc, 0);
                    // 递归添加任务等待完成
                    else if (w.base == w.top || w.tryRemoveAndExec(task))
                        helpStealer(w, task);
                    if ((s = task.status) < 0)
                        break;
                    long ms, ns;
                    if (deadline == 0L)
                        ms = 0L;
                    else if ((ns = deadline - System.nanoTime()) <= 0L)
                        break;
                    else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
                        ms = 1L;
                    if (tryCompensate(w)) {
                        task.internalWait(ms);
                        U.getAndAddLong(this, CTL, AC_UNIT);
                    }
                }
                U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
            }
            return s;
        }
            // java.util.concurrent.ForkJoinPool.WorkQueue#tryRemoveAndExec
            /**
             * If present, removes from queue and executes the given task,
             * or any other cancelled task. Used only by awaitJoin.
             *
             * @return true if queue empty and task not known to be done
             */
            final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
                ForkJoinTask<?>[] a; int m, s, b, n;
                if ((a = array) != null && (m = a.length - 1) >= 0 &&
                    task != null) {
                    while ((n = (s = top) - (b = base)) > 0) {
                        for (ForkJoinTask<?> t;;) {      // traverse from s to b
                            long j = ((--s & m) << ASHIFT) + ABASE;
                            if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
                                return s + 1 == top;     // shorter than expected
                            else if (t == task) {
                                boolean removed = false;
                                if (s + 1 == top) {      // pop
                                    if (U.compareAndSwapObject(a, j, task, null)) {
                                        U.putOrderedInt(this, QTOP, s);
                                        removed = true;
                                    }
                                }
                                else if (base == b)      // replace with proxy
                                    removed = U.compareAndSwapObject(
                                        a, j, task, new EmptyTask());
                                // 执行子任务
                                if (removed)
                                    task.doExec();
                                break;
                            }
                            else if (t.status < 0 && s + 1 == top) {
                                if (U.compareAndSwapObject(a, j, t, null))
                                    U.putOrderedInt(this, QTOP, s);
                                break;                  // was cancelled
                            }
                            if (--n == 0)
                                return false;
                        }
                        if (task.status < 0)
                            return false;
                    }
                }
                return true;
            }

      可见,最终fork/join还是使用递归完成join任务等待。差别在于其利用了多线程的优势,同时执行多个任务。这有两个好处,一是减轻了单线程的任务处理压力,二是让递归的深度也分担到了多个点上。避免了栈早早溢出的可能。

      只是每个线程被分配的任务数是多少,join需要等待的结果有多少,就不太好说了。比如最上层的线程如果任务被别的线程抢走,则它就只需一直在等结果就行了。而最下面的线程,则需要承担最深的递归深度,以保证程序的最终出口。其实从这个点,我们自己可以做个猜想,如果没有做好控制,让线程之间任意执行任务,是否会造成死锁呢?这恐怕是个问题。

    不要害怕今日的苦,你要相信明天,更苦!
  • 相关阅读:
    JMeter的JavaRequest探究
    记一次生产压测遇到的"坑"
    JMeter之If Controller深究二
    JMeter之SteppingShape
    那些年拿过的shell之adminer
    Spring Boot Actuator H2 RCE复现
    使用sqlmap结合dnslog快速注入
    一次稍显曲折的爆破经历
    无回显、不出网命令执行测试方式
    实战绕过某waf后缀检测内容检测
  • 原文地址:https://www.cnblogs.com/yougewe/p/14943418.html
Copyright © 2020-2023  润新知