要想写出高性能高并发的应用,自然有许多关键,如io,算法,异步,语言特性,操作系统特性,队列,内存,cpu,分布式,网络,数据结构,高性能组件。
胡说一通先。
回到主题,线程池。如果说多线程是提高系统并发能力利器之一,那么线程池就是让这个利器更容易控制的一种工具。如果我们自己纯粹使用多线程基础特性编写,那么,必然需要相当老道的经验,才能够驾驭复杂的环境。而线程池则不需要,你只需知道如何使用,即可轻松掌控多线程,安全地为你服务。
1. 常见线程池的应用样例
线程池,不说本身很简单,但应用一定是简单的。
线程池有许多的实现,但我们只说 ThreadPoolExecutor 版本,因其应用最广泛,别无其他。当然了,还有一个定时调度线程池 ScheduledThreadPoolExecutor 另说,因其需求场景不同,无法比较。
下面,我就几个应用级别,说明下我们如何快速使用线程池。(走走过场而已,无关其他)
1.1. 初级线程池
初级版本的使用线程池,只需要借助一个工具类即可: Executors . 它提供了许多静态方法,你只需随便选一个就可以使用线程池了。比如:
// 创建固定数量的线程池 Executors.newFixedThreadPool(8); // 创建无限动态创建的线程池 Executors.newCachedThreadPool(); // 创建定时调度线程池 Executors.newScheduledThreadPool(2); // 还有个创建单线程的就不说了,都一样
使用上面这些方法创建好的线程池,直接调用其 execute() 或者 submit() 方法,就可以实现多线程编程了。没毛病!
1.2. 中级线程池
我这里所说的中级,实际就是不使用以上超级简单方式使用线程池的方式。即你已经知道了 ThreadPoolExecutor 这个东东了。这不管你的出发点是啥!
// 自定义各线程参数 ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(4, 20, 20, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>());
具体参数解释就不说了,咱们不扫盲。总之,使用这玩意儿,说明你已经开始有点门道了。
1.3. 高级线程池
实际上,这个版本就没法具体说如何做了。
但它可能是,你知道你的线程池应用场景的,你清楚你的硬件运行环境的,你会使用线程池命名的,你会定义你的队列大小的,你会考虑上下文切换的,你会考虑线程安全的,你会考虑锁性能的,你可能会自己造个轮子的。。。
2. 这不是线程池
我们通常理解的线程池,就是能够同时跑多个任务的地方。但有时候线程池不一像线程池,而像一个单线程。来看一个具体的简单的线程池的使用场景:
// 初始化线程池 private ExecutorService executor = new ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(), Runtime.getRuntime().availableProcessors(), 0L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(50), new NamedThreadFactory("test-pool"), new ThreadPoolExecutor.CallerRunsPolicy()); // 使用线程池处理任务 public Integer doTask(String updateIntervalDesc) throws Exception { long startTime = System.currentTimeMillis(); List<TestDto> testList; AtomicInteger affectNum = new AtomicInteger(0); int pageSize = 1000; AtomicInteger pageNo = new AtomicInteger(1); Map<String, Object> condGroupLabel = new HashMap<>(); log.info("start do sth:{}", updateIntervalDesc); List<Future<?>> futureList = new ArrayList<>(); do { PageHelper.startPage(pageNo.getAndIncrement(), pageSize); List<TestDto> list = testDao.getLabelListNew(condGroupLabel); testList = list; // 循环向线程池中提交任务 for (TestDto s : list) { Future<?> future = executor.submit(() -> { try { // do sth... affectNum.incrementAndGet(); } catch (Throwable e) { log.error("error:{}", pageNo.get(), e); } }); futureList.add(future); } } while (testList.size() >= pageSize); // 等待任务完成 int i = 0; for (Future<?> future : futureList) { future.get(); log.info("done:+{} ", i++); } log.info("doTask done:{}, num:{}, cost:{}ms", updateIntervalDesc, affectNum.get(), System.currentTimeMillis() - startTime); return affectNum.get(); }
主要业务就是,从数据库中取出许多任务,放入线程池中运行。因为任务又涉及到db等的io操作,所以使用多线程处理,非常合理。
然而,有一种情况的出现,也许会打破这个平衡:那就是当单个任务能够快速执行完成时,而且快到刚上一任务提交完成,还没等下一次提交时,就任务就已被执行完成。这时,你就可能会看到一个神奇的现象,即一直只有一个线程在运行任务。这不是线程池该干的事,更像是单线程任务在跑。
然后,我们可能开始怀疑:某个线程被阻塞了?线程调度不公平了?队列选择不正确了?触发jdk bug了?线程池未完全利用的线程了?等等。。。
然而结果并非如此,纠其原因只是当我们向线程池提交任务时,实际上只是向线程池的队列中添加了任务。即上面显示的 ArrayBlockingQueue 添加了任务,而线程池中的各worker负责从队列中获取任务进行执行。而当任务数很少时,自然只有一部分worker会处理执行中了。至于为什么一直是同一个线程在执行,则可能是由于jvm的调度机制导致。事实上,是受制于 ArrayBlockingQueue.poll() 的公平性。而这个poll()的实现原理,则是由 wait/notify 机制的公平性决定的。
如下,是线程池的worker工作原理:
// java.util.concurrent.ThreadPoolExecutor#runWorker /** * Main worker run loop. Repeatedly gets tasks from queue and * executes them, while coping with a number of issues: * * 1. We may start out with an initial task, in which case we * don't need to get the first one. Otherwise, as long as pool is * running, we get tasks from getTask. If it returns null then the * worker exits due to changed pool state or configuration * parameters. Other exits result from exception throws in * external code, in which case completedAbruptly holds, which * usually leads processWorkerExit to replace this thread. * * 2. Before running any task, the lock is acquired to prevent * other pool interrupts while the task is executing, and then we * ensure that unless pool is stopping, this thread does not have * its interrupt set. * * 3. Each task run is preceded by a call to beforeExecute, which * might throw an exception, in which case we cause thread to die * (breaking loop with completedAbruptly true) without processing * the task. * * 4. Assuming beforeExecute completes normally, we run the task, * gathering any of its thrown exceptions to send to afterExecute. * We separately handle RuntimeException, Error (both of which the * specs guarantee that we trap) and arbitrary Throwables. * Because we cannot rethrow Throwables within Runnable.run, we * wrap them within Errors on the way out (to the thread's * UncaughtExceptionHandler). Any thrown exception also * conservatively causes thread to die. * * 5. After task.run completes, we call afterExecute, which may * also throw an exception, which will also cause thread to * die. According to JLS Sec 14.20, this exception is the one that * will be in effect even if task.run throws. * * The net effect of the exception mechanics is that afterExecute * and the thread's UncaughtExceptionHandler have as accurate * information as we can provide about any problems encountered by * user code. * * @param w the worker */ final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { // worker 不停地向队列中获取任务,然后执行 // 其中获取任务的过程,可能被中断,也可能不会,受到线程池伸缩配置的影响 while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } } /** * Performs blocking or timed wait for a task, depending on * current configuration settings, or returns null if this worker * must exit because of any of: * 1. There are more than maximumPoolSize workers (due to * a call to setMaximumPoolSize). * 2. The pool is stopped. * 3. The pool is shutdown and the queue is empty. * 4. This worker timed out waiting for a task, and timed-out * workers are subject to termination (that is, * {@code allowCoreThreadTimeOut || workerCount > corePoolSize}) * both before and after the timed wait, and if the queue is * non-empty, this worker is not the last thread in the pool. * * @return task, or null if the worker must exit, in which case * workerCount is decremented */ private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { // 可能调用超时方法,也可能调用阻塞方法 // 固定线程池的情况下,调用阻塞 take() 方法 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }
即线程池worker持续向队列获取任务,执行即可。而队列任务的获取,则由两个读写锁决定:
// java.util.concurrent.ArrayBlockingQueue#take public E take() throws InterruptedException { final ReentrantLock lock = this.lock; // 此处锁,保证执行线程安全性 lock.lockInterruptibly(); try { while (count == 0) // 此处释放锁等待,再次唤醒时,要求必须重新持有锁 notEmpty.await(); return dequeue(); } finally { lock.unlock(); } } // /** * Inserts the specified element at the tail of this queue, waiting * for space to become available if the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) notFull.await(); enqueue(e); } finally { lock.unlock(); } } /** * Inserts element at current put position, advances, and signals. * Call only when holding lock. */ private void enqueue(E x) { // assert lock.getHoldCount() == 1; // assert items[putIndex] == null; final Object[] items = this.items; items[putIndex] = x; if (++putIndex == items.length) putIndex = 0; count++; // 通知取等线程,唤醒 notEmpty.signal(); }
所以,具体谁取到任务,就是要看谁抢到了锁。而这,可能又涉及到jvm的高效调度策略啥的了吧。(虽然不确定,但感觉像) 至少,任务运行的表象是,所有任务被某个线程一直抢到。即jvm认为,被某线程抢到是最优策略。
3. 回归线程池
线程池的目的,在于处理一些异步的任务,或者并发的执行多个无关联的任务。在于让系统减负。而当任务的提交消耗,大于了任务的执行消耗,那就没必要使用多线程了,或者说这是错误的用法了。我们应该线程池做更重的活,而不是轻量级的。如上问题,执行性能必然很差。但我们稍做转变,也许就不一样了。
// 初始化线程池 private ExecutorService executor = new ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(), Runtime.getRuntime().availableProcessors(), 0L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(50), new NamedThreadFactory("test-pool"), new ThreadPoolExecutor.CallerRunsPolicy()); // 使用线程池处理任务 public Integer doTask(String updateIntervalDesc) throws Exception { long startTime = System.currentTimeMillis(); List<TestDto> testList; AtomicInteger affectNum = new AtomicInteger(0); int pageSize = 1000; AtomicInteger pageNo = new AtomicInteger(1); Map<String, Object> condGroupLabel = new HashMap<>(); log.info("start do sth:{}", updateIntervalDesc); List<Future<?>> futureList = new ArrayList<>(); do { PageHelper.startPage(pageNo.getAndIncrement(), pageSize); List<TestDto> list = testDao.getLabelListNew(condGroupLabel); testList = list; // 一批任务只向线程池中提交任务 Future<?> future = executor.submit(() -> { for (TestDto s : list) { try { // do sth... affectNum.incrementAndGet(); } catch (Throwable e) { log.error("error:{}", pageNo.get(), e); } } }); futureList.add(future); } while (testList.size() >= pageSize); // 等待任务完成 int i = 0; for (Future<?> future : futureList) { future.get(); log.info("done:+{} ", i++); } log.info("doTask done:{}, num:{}, cost:{}ms", updateIntervalDesc, affectNum.get(), System.currentTimeMillis() - startTime); return affectNum.get(); }
即,让每个线程执行的任务足够重,以至于完全忽略提交的消耗。这样才能够发挥多线程的作用。