• 差分约束 poj 1201 (最大路径,区间约束)


    关于差分约束,有个很好的博客 

    http://www.cppblog.com/menjitianya/archive/2015/11/19/212292.html

    https://blog.csdn.net/consciousman/article/details/53812818

    Description

    You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. 
    Write a program that: 
    reads the number of intervals, their end points and integers c1, ..., cn from the standard input, 
    computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, 
    writes the answer to the standard output. 

    Input

    The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

    Output

    The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

    Sample Input

    5
    3 7 3
    8 10 3
    6 8 1
    1 3 1
    10 11 1

    Sample Output

    6

    Source

     
    给定n(n <= 50000)个整点闭区间和这个区间中至少有多少整点需要被选中,每个区间的范围为[ai, bi],并且至少有ci个点需要被选中,其中0 <= ai <= bi <= 50000,问[0, 50000]至少需要有多少点被选中。例如3 6 2 表示[3, 6]这个区间至少需要选择2个点,可以是3,4也可以是4,6(总情况有 C(4, 2)种 )。
    首先根据题目给的关系,有d[ bi ]  - d[ ai - 1 ] >= ci   (因为实际上区间中有bi-ai-+1个点,ai也算),d[i]表示[0,i]中最少有多少个满足的点,然后又有一个条件:就是i选不选,那么就有另一个关系0 <= d[i] - d[i-1] <= 1 ,在这套关系里,因为包含0,所以整个区间的源点是d[-1]=0,那么为了方便处理,可以把所有的数据都+1,然后根据不等关系建图,用spfa处理一遍,因为题目所需的是最少,即求最长路径。
    //#include <bits/stdc++.h>
    #include<iostream>
    #include<cstdio>
    #include<queue>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    #define maxn 100005
    #define INF 9999999
    typedef pair<int,int> pii;
    vector<pii> e[maxn];
    int vis[maxn],cnt[maxn],d[maxn],n,mmax,mmin;
    
    void add_edge(int x,int y,int z)
    {
        e[x].push_back(make_pair(y,z));
        //e[y].push_back(make_pair(x,z));
    }
    
    void init(int n)
    {
        for(int i=0; i<=n; i++) e[i].clear();
        for(int i=0; i<=n; i++) d[i]=-INF;
    }
    
    void spfa(int s)
    {
        queue<int>q;
        memset(vis,0,sizeof(vis));
        fill(d,d+mmax,-INF);                 //最长路径记得改一下d[i]的初始化
        q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!q.empty())
        {
            int now=q.front();
            vis[now]=0;
            q.pop();
            for(int i=0; i<e[now].size(); i++)
            {
                int v=e[now][i].first;
                if(d[v]<d[now]+e[now][i].second)
                {
                    d[v]=d[now]+e[now][i].second;
                    if(!vis[v])
                    {
                        q.push(v);
                        vis[v]=1;
                    }
                }
            }
        }
    }
    
    int main()
    {
        while(~scanf("%d",&n))
        {
           memset(e,0,sizeof(e));
            mmin=INF;
            mmax=-INF;
            for(int i=0; i<n; i++)
            {
                int x,y,z;
                scanf("%d %d %d",&x,&y,&z);
                mmax=max(y+1,mmax);               //找出区间最小点和最大点,作为起点和终点
                mmin=min(x,mmin);
                add_edge(x,y+1,z);
            for(int i=mmin; i<mmax; i++)
            {
                add_edge(i,i+1,0);
                add_edge(i+1,i,-1);
            }
            spfa(mmin);
            printf("%d
    ",d[mmax]);
    
        }
    }
    View Code
  • 相关阅读:
    Windows Server 2012 R2 或 2016 无法安装 .Net 3.5.1
    织梦DeDeCms会员登录或退出跳转到首页的修改方法
    use ngCordova in ionic
    Angular2 Todo App
    use traceur in ES6
    Angular2 Use styles in Component
    Angular2 use ng-xx (ng-if)
    Angular2 Router
    Angular2 Http
    1 TypeScript SetUp for Webstorm
  • 原文地址:https://www.cnblogs.com/youchandaisuki/p/8666452.html
Copyright © 2020-2023  润新知