• Java的HashMap是如何实现的?


      以下内容转自:http://blog.csdn.net/vking_wang/article/details/14166593

    1. HashMap的数据结构

    数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。

          数组

    数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;

    链表

    链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。

    哈希表(PS:图的邻接表法存储?
    )

    那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。

      哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:

      从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。

      HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。

      首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。

        /**
         * The table, resized as necessary. Length MUST Always be a power of two.
         */

        transient Entry[] table;

    2. HashMap的存取实现

         既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:

    // 存储时:
    int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
    int index = hash % Entry[].length;
    Entry[index] = value;

    // 取值时:
    int hash = key.hashCode();
    int index = hash % Entry[].length;
    return Entry[index];
     

    1)put

     
    疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?

      这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。

     public V put(K key, V value) {
            if (key == null)
                return putForNullKey(value); //null总是放在数组的第一个链表中
            int hash = hash(key.hashCode());
            int i = indexFor(hash, table.length);
            //遍历链表
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                //如果key在链表中已存在,则替换为新value
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
     
            modCount++;
            addEntry(hash, key, value, i);
            return null;

        }

    void addEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next
        //如果size超过threshold,则扩充table大小。再散列
        if (size++ >= threshold)
                resize(2 * table.length);
    }

      当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。

    2)get

     public V get(Object key) {
            if (key == null)
                return getForNullKey();
            int hash = hash(key.hashCode());
            //先定位到数组元素,再遍历该元素处的链表
            for (Entry<K,V> e = table[indexFor(hash, table.length)];
                 e != null;
                 e = e.next) {
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                    return e.value;
            }
            return null;
    }

    3)null key的存取

    null key总是存放在Entry[]数组的第一个元素。

       private V putForNullKey(V value) {
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
            modCount++;
            addEntry(0, null, value, 0);
            return null;
        }
     
        private V getForNullKey() {
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null)
                    return e.value;
            }
            return null;
        }
     
     
     
     

    4)确定数组index:hashcode % table.length取模

    HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:

       /**
         * Returns index for hash code h.
         */
        static int indexFor(int h, int length) {
            return h & (length-1);
        }
     
    按位取并,作用上相当于取模mod或者取余%。
    这意味着数组下标相同,并不表示hashCode相同。
     

    5)table初始大小

     
      public HashMap(int initialCapacity, float loadFactor) {
            .....
     
            // Find a power of 2 >= initialCapacity
            int capacity = 1;
            while (capacity < initialCapacity)
                capacity <<= 1;
     
            this.loadFactor = loadFactor;
            threshold = (int)(capacity * loadFactor);
            table = new Entry[capacity];
            init();
        }
     

    注意table初始大小并不是构造函数中的initialCapacity!!

    而是 >= initialCapacity的2的n次幂!!!!

    ————为什么这么设计呢?——

    3. 解决hash冲突的办法

    1. 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
    2. 再哈希法
    3. 链地址法
    4. 建立一个公共溢出区

    Java中hashmap的解决办法就是采用的链地址法。

    4. 再散列rehash过程

    当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。

       /**
         * Rehashes the contents of this map into a new array with a
         * larger capacity.  This method is called automatically when the
         * number of keys in this map reaches its threshold.
         *
         * If current capacity is MAXIMUM_CAPACITY, this method does not
         * resize the map, but sets threshold to Integer.MAX_VALUE.
         * This has the effect of preventing future calls.
         *
         * @param newCapacity the new capacity, MUST be a power of two;
         *        must be greater than current capacity unless current
         *        capacity is MAXIMUM_CAPACITY (in which case value
         *        is irrelevant).
         */
        void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity == MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return;
            }
     
            Entry[] newTable = new Entry[newCapacity];
            transfer(newTable);
            table = newTable;
            threshold = (int)(newCapacity * loadFactor);

        }

        /**
         * Transfers all entries from current table to newTable.
         */
        void transfer(Entry[] newTable) {
            Entry[] src = table;
            int newCapacity = newTable.length;
            for (int j = 0; j < src.length; j++) {
                Entry<K,V> e = src[j];
                if (e != null) {
                    src[j] = null;
                    do {
                        Entry<K,V> next = e.next;
                        //重新计算index
                        int i = indexFor(e.hash, newCapacity);
                        e.next = newTable[i];
                        newTable[i] = e;
                        e = next;
                    } while (e != null);
                }
            }

        }

    HashMap.java源代码:

    /*
    * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
    * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
    *
    */
    
    package java.util;
    import java.io.*;
    
    /**
    * Hash table based implementation of the <tt>Map</tt> interface. This
    * implementation provides all of the optional map operations, and permits
    * <tt>null</tt> values and the <tt>null</tt> key. (The <tt>HashMap</tt>
    * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
    * unsynchronized and permits nulls.) This class makes no guarantees as to
    * the order of the map; in particular, it does not guarantee that the order
    * will remain constant over time.
    *
    * <p>This implementation provides constant-time performance for the basic
    * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
    * disperses the elements properly among the buckets. Iteration over
    * collection views requires time proportional to the "capacity" of the
    * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
    * of key-value mappings). Thus, it's very important not to set the initial
    * capacity too high (or the load factor too low) if iteration performance is
    * important.
    *
    * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
    * performance: <i>initial capacity</i> and <i>load factor</i>. The
    * <i>capacity</i> is the number of buckets in the hash table, and the initial
    * capacity is simply the capacity at the time the hash table is created. The
    * <i>load factor</i> is a measure of how full the hash table is allowed to
    * get before its capacity is automatically increased. When the number of
    * entries in the hash table exceeds the product of the load factor and the
    * current capacity, the hash table is <i>rehashed</i> (that is, internal data
    * structures are rebuilt) so that the hash table has approximately twice the
    * number of buckets.
    *
    * <p>As a general rule, the default load factor (.75) offers a good tradeoff
    * between time and space costs. Higher values decrease the space overhead
    * but increase the lookup cost (reflected in most of the operations of the
    * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>). The
    * expected number of entries in the map and its load factor should be taken
    * into account when setting its initial capacity, so as to minimize the
    * number of rehash operations. If the initial capacity is greater
    * than the maximum number of entries divided by the load factor, no
    * rehash operations will ever occur.
    *
    * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,
    * creating it with a sufficiently large capacity will allow the mappings to
    * be stored more efficiently than letting it perform automatic rehashing as
    * needed to grow the table.
    *
    * <p><strong>Note that this implementation is not synchronized.</strong>
    * If multiple threads access a hash map concurrently, and at least one of
    * the threads modifies the map structurally, it <i>must</i> be
    * synchronized externally. (A structural modification is any operation
    * that adds or deletes one or more mappings; merely changing the value
    * associated with a key that an instance already contains is not a
    * structural modification.) This is typically accomplished by
    * synchronizing on some object that naturally encapsulates the map.
    *
    * If no such object exists, the map should be "wrapped" using the
    * {@link Collections#synchronizedMap Collections.synchronizedMap}
    * method. This is best done at creation time, to prevent accidental
    * unsynchronized access to the map:<pre>
    * Map m = Collections.synchronizedMap(new HashMap(...));</pre>
    *
    * <p>The iterators returned by all of this class's "collection view methods"
    * are <i>fail-fast</i>: if the map is structurally modified at any time after
    * the iterator is created, in any way except through the iterator's own
    * <tt>remove</tt> method, the iterator will throw a
    * {@link ConcurrentModificationException}. Thus, in the face of concurrent
    * modification, the iterator fails quickly and cleanly, rather than risking
    * arbitrary, non-deterministic behavior at an undetermined time in the
    * future.
    *
    * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
    * as it is, generally speaking, impossible to make any hard guarantees in the
    * presence of unsynchronized concurrent modification. Fail-fast iterators
    * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
    * Therefore, it would be wrong to write a program that depended on this
    * exception for its correctness: <i>the fail-fast behavior of iterators
    * should be used only to detect bugs.</i>
    *
    * <p>This class is a member of the
    * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    * Java Collections Framework</a>.
    *
    * @param <K> the type of keys maintained by this map
    * @param <V> the type of mapped values
    *
    * @author Doug Lea
    * @author Josh Bloch
    * @author Arthur van Hoff
    * @author Neal Gafter
    * @see Object#hashCode()
    * @see Collection
    * @see Map
    * @see TreeMap
    * @see Hashtable
    * @since 1.2
    */
    
    public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
    {
    
    /**
    * The default initial capacity - MUST be a power of two.
    */
    static final int DEFAULT_INITIAL_CAPACITY = 16;
    
    /**
    * The maximum capacity, used if a higher value is implicitly specified
    * by either of the constructors with arguments.
    * MUST be a power of two <= 1<<30.
    */
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    /**
    * The load factor used when none specified in constructor.
    */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    /**
    * The table, resized as necessary. Length MUST Always be a power of two.
    */
    transient Entry<K,V>[] table;
    
    /**
    * The number of key-value mappings contained in this map.
    */
    transient int size;
    
    /**
    * The next size value at which to resize (capacity * load factor).
    * @serial
    */
    int threshold;
    
    /**
    * The load factor for the hash table.
    *
    * @serial
    */
    final float loadFactor;
    
    /**
    * The number of times this HashMap has been structurally modified
    * Structural modifications are those that change the number of mappings in
    * the HashMap or otherwise modify its internal structure (e.g.,
    * rehash). This field is used to make iterators on Collection-views of
    * the HashMap fail-fast. (See ConcurrentModificationException).
    */
    transient int modCount;
    
    /**
    * The default threshold of map capacity above which alternative hashing is
    * used for String keys. Alternative hashing reduces the incidence of
    * collisions due to weak hash code calculation for String keys.
    * <p/>
    * This value may be overridden by defining the system property
    * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
    * forces alternative hashing to be used at all times whereas
    * {@code -1} value ensures that alternative hashing is never used.
    */
    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
    
    /**
    * holds values which can't be initialized until after VM is booted.
    */
    private static class Holder {
    
    // Unsafe mechanics
    /**
    * Unsafe utilities
    */
    static final sun.misc.Unsafe UNSAFE;
    
    /**
    * Offset of "final" hashSeed field we must set in readObject() method.
    */
    static final long HASHSEED_OFFSET;
    
    /**
    * Table capacity above which to switch to use alternative hashing.
    */
    static final int ALTERNATIVE_HASHING_THRESHOLD;
    
    static {
    String altThreshold = java.security.AccessController.doPrivileged(
    new sun.security.action.GetPropertyAction(
    "jdk.map.althashing.threshold"));
    
    int threshold;
    try {
    threshold = (null != altThreshold)
    ? Integer.parseInt(altThreshold)
    : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
    
    // disable alternative hashing if -1
    if (threshold == -1) {
    threshold = Integer.MAX_VALUE;
    }
    
    if (threshold < 0) {
    throw new IllegalArgumentException("value must be positive integer.");
    }
    } catch(IllegalArgumentException failed) {
    throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
    }
    ALTERNATIVE_HASHING_THRESHOLD = threshold;
    
    try {
    UNSAFE = sun.misc.Unsafe.getUnsafe();
    HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
    HashMap.class.getDeclaredField("hashSeed"));
    } catch (NoSuchFieldException | SecurityException e) {
    throw new Error("Failed to record hashSeed offset", e);
    }
    }
    }
    
    /**
    * If {@code true} then perform alternative hashing of String keys to reduce
    * the incidence of collisions due to weak hash code calculation.
    */
    transient boolean useAltHashing;
    
    /**
    * A randomizing value associated with this instance that is applied to
    * hash code of keys to make hash collisions harder to find.
    */
    transient final int hashSeed = sun.misc.Hashing.randomHashSeed(this);
    
    /**
    * Constructs an empty <tt>HashMap</tt> with the specified initial
    * capacity and load factor.
    *
    * @param initialCapacity the initial capacity
    * @param loadFactor the load factor
    * @throws IllegalArgumentException if the initial capacity is negative
    * or the load factor is nonpositive
    */
    public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
    throw new IllegalArgumentException("Illegal initial capacity: " +
    initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
    throw new IllegalArgumentException("Illegal load factor: " +
    loadFactor);
    
    // Find a power of 2 >= initialCapacity
    int capacity = 1;
    while (capacity < initialCapacity)
    capacity <<= 1;
    
    this.loadFactor = loadFactor;
    threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
    table = new Entry[capacity];
    useAltHashing = sun.misc.VM.isBooted() &&
    (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
    init();
    }
    
    /**
    * Constructs an empty <tt>HashMap</tt> with the specified initial
    * capacity and the default load factor (0.75).
    *
    * @param initialCapacity the initial capacity.
    * @throws IllegalArgumentException if the initial capacity is negative.
    */
    public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    
    /**
    * Constructs an empty <tt>HashMap</tt> with the default initial capacity
    * (16) and the default load factor (0.75).
    */
    public HashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }
    
    /**
    * Constructs a new <tt>HashMap</tt> with the same mappings as the
    * specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
    * default load factor (0.75) and an initial capacity sufficient to
    * hold the mappings in the specified <tt>Map</tt>.
    *
    * @param m the map whose mappings are to be placed in this map
    * @throws NullPointerException if the specified map is null
    */
    public HashMap(Map<? extends K, ? extends V> m) {
    this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
    DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
    putAllForCreate(m);
    }
    
    // internal utilities
    
    /**
    * Initialization hook for subclasses. This method is called
    * in all constructors and pseudo-constructors (clone, readObject)
    * after HashMap has been initialized but before any entries have
    * been inserted. (In the absence of this method, readObject would
    * require explicit knowledge of subclasses.)
    */
    void init() {
    }
    
    /**
    * Retrieve object hash code and applies a supplemental hash function to the
    * result hash, which defends against poor quality hash functions. This is
    * critical because HashMap uses power-of-two length hash tables, that
    * otherwise encounter collisions for hashCodes that do not differ
    * in lower bits. Note: Null keys always map to hash 0, thus index 0.
    */
    final int hash(Object k) {
    int h = 0;
    if (useAltHashing) {
    if (k instanceof String) {
    return sun.misc.Hashing.stringHash32((String) k);
    }
    h = hashSeed;
    }
    
    h ^= k.hashCode();
    
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
    }
    
    /**
    * Returns index for hash code h.
    */
    static int indexFor(int h, int length) {
    return h & (length-1);
    }
    
    /**
    * Returns the number of key-value mappings in this map.
    *
    * @return the number of key-value mappings in this map
    */
    public int size() {
    return size;
    }
    
    /**
    * Returns <tt>true</tt> if this map contains no key-value mappings.
    *
    * @return <tt>true</tt> if this map contains no key-value mappings
    */
    public boolean isEmpty() {
    return size == 0;
    }
    
    /**
    * Returns the value to which the specified key is mapped,
    * or {@code null} if this map contains no mapping for the key.
    *
    * <p>More formally, if this map contains a mapping from a key
    * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
    * key.equals(k))}, then this method returns {@code v}; otherwise
    * it returns {@code null}. (There can be at most one such mapping.)
    *
    * <p>A return value of {@code null} does not <i>necessarily</i>
    * indicate that the map contains no mapping for the key; it's also
    * possible that the map explicitly maps the key to {@code null}.
    * The {@link #containsKey containsKey} operation may be used to
    * distinguish these two cases.
    *
    * @see #put(Object, Object)
    */
    public V get(Object key) {
    if (key == null)
    return getForNullKey();
    Entry<K,V> entry = getEntry(key);
    
    return null == entry ? null : entry.getValue();
    }
    
    /**
    * Offloaded version of get() to look up null keys. Null keys map
    * to index 0. This null case is split out into separate methods
    * for the sake of performance in the two most commonly used
    * operations (get and put), but incorporated with conditionals in
    * others.
    */
    private V getForNullKey() {
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
    if (e.key == null)
    return e.value;
    }
    return null;
    }
    
    /**
    * Returns <tt>true</tt> if this map contains a mapping for the
    * specified key.
    *
    * @param key The key whose presence in this map is to be tested
    * @return <tt>true</tt> if this map contains a mapping for the specified
    * key.
    */
    public boolean containsKey(Object key) {
    return getEntry(key) != null;
    }
    
    /**
    * Returns the entry associated with the specified key in the
    * HashMap. Returns null if the HashMap contains no mapping
    * for the key.
    */
    final Entry<K,V> getEntry(Object key) {
    int hash = (key == null) ? 0 : hash(key);
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
    e != null;
    e = e.next) {
    Object k;
    if (e.hash == hash &&
    ((k = e.key) == key || (key != null && key.equals(k))))
    return e;
    }
    return null;
    }
    
    
    /**
    * Associates the specified value with the specified key in this map.
    * If the map previously contained a mapping for the key, the old
    * value is replaced.
    *
    * @param key key with which the specified value is to be associated
    * @param value value to be associated with the specified key
    * @return the previous value associated with <tt>key</tt>, or
    * <tt>null</tt> if there was no mapping for <tt>key</tt>.
    * (A <tt>null</tt> return can also indicate that the map
    * previously associated <tt>null</tt> with <tt>key</tt>.)
    */
    public V put(K key, V value) {
    if (key == null)
    return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
    V oldValue = e.value;
    e.value = value;
    e.recordAccess(this);
    return oldValue;
    }
    }
    
    modCount++;
    addEntry(hash, key, value, i);
    return null;
    }
    
    /**
    * Offloaded version of put for null keys
    */
    private V putForNullKey(V value) {
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
    if (e.key == null) {
    V oldValue = e.value;
    e.value = value;
    e.recordAccess(this);
    return oldValue;
    }
    }
    modCount++;
    addEntry(0, null, value, 0);
    return null;
    }
    
    /**
    * This method is used instead of put by constructors and
    * pseudoconstructors (clone, readObject). It does not resize the table,
    * check for comodification, etc. It calls createEntry rather than
    * addEntry.
    */
    private void putForCreate(K key, V value) {
    int hash = null == key ? 0 : hash(key);
    int i = indexFor(hash, table.length);
    
    /**
    * Look for preexisting entry for key. This will never happen for
    * clone or deserialize. It will only happen for construction if the
    * input Map is a sorted map whose ordering is inconsistent w/ equals.
    */
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
    Object k;
    if (e.hash == hash &&
    ((k = e.key) == key || (key != null && key.equals(k)))) {
    e.value = value;
    return;
    }
    }
    
    createEntry(hash, key, value, i);
    }
    
    private void putAllForCreate(Map<? extends K, ? extends V> m) {
    for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
    putForCreate(e.getKey(), e.getValue());
    }
    
    /**
    * Rehashes the contents of this map into a new array with a
    * larger capacity. This method is called automatically when the
    * number of keys in this map reaches its threshold.
    *
    * If current capacity is MAXIMUM_CAPACITY, this method does not
    * resize the map, but sets threshold to Integer.MAX_VALUE.
    * This has the effect of preventing future calls.
    *
    * @param newCapacity the new capacity, MUST be a power of two;
    * must be greater than current capacity unless current
    * capacity is MAXIMUM_CAPACITY (in which case value
    * is irrelevant).
    */
    void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
    threshold = Integer.MAX_VALUE;
    return;
    }
    
    Entry[] newTable = new Entry[newCapacity];
    boolean oldAltHashing = useAltHashing;
    useAltHashing |= sun.misc.VM.isBooted() &&
    (newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
    boolean rehash = oldAltHashing ^ useAltHashing;
    transfer(newTable, rehash);
    table = newTable;
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }
    
    /**
    * Transfers all entries from current table to newTable.
    */
    void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
    while(null != e) {
    Entry<K,V> next = e.next;
    if (rehash) {
    e.hash = null == e.key ? 0 : hash(e.key);
    }
    int i = indexFor(e.hash, newCapacity);
    e.next = newTable[i];
    newTable[i] = e;
    e = next;
    }
    }
    }
    
    /**
    * Copies all of the mappings from the specified map to this map.
    * These mappings will replace any mappings that this map had for
    * any of the keys currently in the specified map.
    *
    * @param m mappings to be stored in this map
    * @throws NullPointerException if the specified map is null
    */
    public void putAll(Map<? extends K, ? extends V> m) {
    int numKeysToBeAdded = m.size();
    if (numKeysToBeAdded == 0)
    return;
    
    /*
    * Expand the map if the map if the number of mappings to be added
    * is greater than or equal to threshold. This is conservative; the
    * obvious condition is (m.size() + size) >= threshold, but this
    * condition could result in a map with twice the appropriate capacity,
    * if the keys to be added overlap with the keys already in this map.
    * By using the conservative calculation, we subject ourself
    * to at most one extra resize.
    */
    if (numKeysToBeAdded > threshold) {
    int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
    if (targetCapacity > MAXIMUM_CAPACITY)
    targetCapacity = MAXIMUM_CAPACITY;
    int newCapacity = table.length;
    while (newCapacity < targetCapacity)
    newCapacity <<= 1;
    if (newCapacity > table.length)
    resize(newCapacity);
    }
    
    for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
    put(e.getKey(), e.getValue());
    }
    
    /**
    * Removes the mapping for the specified key from this map if present.
    *
    * @param key key whose mapping is to be removed from the map
    * @return the previous value associated with <tt>key</tt>, or
    * <tt>null</tt> if there was no mapping for <tt>key</tt>.
    * (A <tt>null</tt> return can also indicate that the map
    * previously associated <tt>null</tt> with <tt>key</tt>.)
    */
    public V remove(Object key) {
    Entry<K,V> e = removeEntryForKey(key);
    return (e == null ? null : e.value);
    }
    
    /**
    * Removes and returns the entry associated with the specified key
    * in the HashMap. Returns null if the HashMap contains no mapping
    * for this key.
    */
    final Entry<K,V> removeEntryForKey(Object key) {
    int hash = (key == null) ? 0 : hash(key);
    int i = indexFor(hash, table.length);
    Entry<K,V> prev = table[i];
    Entry<K,V> e = prev;
    
    while (e != null) {
    Entry<K,V> next = e.next;
    Object k;
    if (e.hash == hash &&
    ((k = e.key) == key || (key != null && key.equals(k)))) {
    modCount++;
    size--;
    if (prev == e)
    table[i] = next;
    else
    prev.next = next;
    e.recordRemoval(this);
    return e;
    }
    prev = e;
    e = next;
    }
    
    return e;
    }
    
    /**
    * Special version of remove for EntrySet using {@code Map.Entry.equals()}
    * for matching.
    */
    final Entry<K,V> removeMapping(Object o) {
    if (!(o instanceof Map.Entry))
    return null;
    
    Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
    Object key = entry.getKey();
    int hash = (key == null) ? 0 : hash(key);
    int i = indexFor(hash, table.length);
    Entry<K,V> prev = table[i];
    Entry<K,V> e = prev;
    
    while (e != null) {
    Entry<K,V> next = e.next;
    if (e.hash == hash && e.equals(entry)) {
    modCount++;
    size--;
    if (prev == e)
    table[i] = next;
    else
    prev.next = next;
    e.recordRemoval(this);
    return e;
    }
    prev = e;
    e = next;
    }
    
    return e;
    }
    
    /**
    * Removes all of the mappings from this map.
    * The map will be empty after this call returns.
    */
    public void clear() {
    modCount++;
    Entry[] tab = table;
    for (int i = 0; i < tab.length; i++)
    tab[i] = null;
    size = 0;
    }
    
    /**
    * Returns <tt>true</tt> if this map maps one or more keys to the
    * specified value.
    *
    * @param value value whose presence in this map is to be tested
    * @return <tt>true</tt> if this map maps one or more keys to the
    * specified value
    */
    public boolean containsValue(Object value) {
    if (value == null)
    return containsNullValue();
    
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)
    for (Entry e = tab[i] ; e != null ; e = e.next)
    if (value.equals(e.value))
    return true;
    return false;
    }
    
    /**
    * Special-case code for containsValue with null argument
    */
    private boolean containsNullValue() {
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)
    for (Entry e = tab[i] ; e != null ; e = e.next)
    if (e.value == null)
    return true;
    return false;
    }
    
    /**
    * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
    * values themselves are not cloned.
    *
    * @return a shallow copy of this map
    */
    public Object clone() {
    HashMap<K,V> result = null;
    try {
    result = (HashMap<K,V>)super.clone();
    } catch (CloneNotSupportedException e) {
    // assert false;
    }
    result.table = new Entry[table.length];
    result.entrySet = null;
    result.modCount = 0;
    result.size = 0;
    result.init();
    result.putAllForCreate(this);
    
    return result;
    }
    
    static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    Entry<K,V> next;
    int hash;
    
    /**
    * Creates new entry.
    */
    Entry(int h, K k, V v, Entry<K,V> n) {
    value = v;
    next = n;
    key = k;
    hash = h;
    }
    
    public final K getKey() {
    return key;
    }
    
    public final V getValue() {
    return value;
    }
    
    public final V setValue(V newValue) {
    V oldValue = value;
    value = newValue;
    return oldValue;
    }
    
    public final boolean equals(Object o) {
    if (!(o instanceof Map.Entry))
    return false;
    Map.Entry e = (Map.Entry)o;
    Object k1 = getKey();
    Object k2 = e.getKey();
    if (k1 == k2 || (k1 != null && k1.equals(k2))) {
    Object v1 = getValue();
    Object v2 = e.getValue();
    if (v1 == v2 || (v1 != null && v1.equals(v2)))
    return true;
    }
    return false;
    }
    
    public final int hashCode() {
    return (key==null ? 0 : key.hashCode()) ^
    (value==null ? 0 : value.hashCode());
    }
    
    public final String toString() {
    return getKey() + "=" + getValue();
    }
    
    /**
    * This method is invoked whenever the value in an entry is
    * overwritten by an invocation of put(k,v) for a key k that's already
    * in the HashMap.
    */
    void recordAccess(HashMap<K,V> m) {
    }
    
    /**
    * This method is invoked whenever the entry is
    * removed from the table.
    */
    void recordRemoval(HashMap<K,V> m) {
    }
    }
    
    /**
    * Adds a new entry with the specified key, value and hash code to
    * the specified bucket. It is the responsibility of this
    * method to resize the table if appropriate.
    *
    * Subclass overrides this to alter the behavior of put method.
    */
    void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
    resize(2 * table.length);
    hash = (null != key) ? hash(key) : 0;
    bucketIndex = indexFor(hash, table.length);
    }
    
    createEntry(hash, key, value, bucketIndex);
    }
    
    /**
    * Like addEntry except that this version is used when creating entries
    * as part of Map construction or "pseudo-construction" (cloning,
    * deserialization). This version needn't worry about resizing the table.
    *
    * Subclass overrides this to alter the behavior of HashMap(Map),
    * clone, and readObject.
    */
    void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
    }
    
    private abstract class HashIterator<E> implements Iterator<E> {
    Entry<K,V> next; // next entry to return
    int expectedModCount; // For fast-fail
    int index; // current slot
    Entry<K,V> current; // current entry
    
    HashIterator() {
    expectedModCount = modCount;
    if (size > 0) { // advance to first entry
    Entry[] t = table;
    while (index < t.length && (next = t[index++]) == null)
    ;
    }
    }
    
    public final boolean hasNext() {
    return next != null;
    }
    
    final Entry<K,V> nextEntry() {
    if (modCount != expectedModCount)
    throw new ConcurrentModificationException();
    Entry<K,V> e = next;
    if (e == null)
    throw new NoSuchElementException();
    
    if ((next = e.next) == null) {
    Entry[] t = table;
    while (index < t.length && (next = t[index++]) == null)
    ;
    }
    current = e;
    return e;
    }
    
    public void remove() {
    if (current == null)
    throw new IllegalStateException();
    if (modCount != expectedModCount)
    throw new ConcurrentModificationException();
    Object k = current.key;
    current = null;
    HashMap.this.removeEntryForKey(k);
    expectedModCount = modCount;
    }
    }
    
    private final class ValueIterator extends HashIterator<V> {
    public V next() {
    return nextEntry().value;
    }
    }
    
    private final class KeyIterator extends HashIterator<K> {
    public K next() {
    return nextEntry().getKey();
    }
    }
    
    private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
    public Map.Entry<K,V> next() {
    return nextEntry();
    }
    }
    
    // Subclass overrides these to alter behavior of views' iterator() method
    Iterator<K> newKeyIterator() {
    return new KeyIterator();
    }
    Iterator<V> newValueIterator() {
    return new ValueIterator();
    }
    Iterator<Map.Entry<K,V>> newEntryIterator() {
    return new EntryIterator();
    }
    
    
    // Views
    
    private transient Set<Map.Entry<K,V>> entrySet = null;
    
    /**
    * Returns a {@link Set} view of the keys contained in this map.
    * The set is backed by the map, so changes to the map are
    * reflected in the set, and vice-versa. If the map is modified
    * while an iteration over the set is in progress (except through
    * the iterator's own <tt>remove</tt> operation), the results of
    * the iteration are undefined. The set supports element removal,
    * which removes the corresponding mapping from the map, via the
    * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
    * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
    * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
    * operations.
    */
    public Set<K> keySet() {
    Set<K> ks = keySet;
    return (ks != null ? ks : (keySet = new KeySet()));
    }
    
    private final class KeySet extends AbstractSet<K> {
    public Iterator<K> iterator() {
    return newKeyIterator();
    }
    public int size() {
    return size;
    }
    public boolean contains(Object o) {
    return containsKey(o);
    }
    public boolean remove(Object o) {
    return HashMap.this.removeEntryForKey(o) != null;
    }
    public void clear() {
    HashMap.this.clear();
    }
    }
    
    /**
    * Returns a {@link Collection} view of the values contained in this map.
    * The collection is backed by the map, so changes to the map are
    * reflected in the collection, and vice-versa. If the map is
    * modified while an iteration over the collection is in progress
    * (except through the iterator's own <tt>remove</tt> operation),
    * the results of the iteration are undefined. The collection
    * supports element removal, which removes the corresponding
    * mapping from the map, via the <tt>Iterator.remove</tt>,
    * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
    * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
    * support the <tt>add</tt> or <tt>addAll</tt> operations.
    */
    public Collection<V> values() {
    Collection<V> vs = values;
    return (vs != null ? vs : (values = new Values()));
    }
    
    private final class Values extends AbstractCollection<V> {
    public Iterator<V> iterator() {
    return newValueIterator();
    }
    public int size() {
    return size;
    }
    public boolean contains(Object o) {
    return containsValue(o);
    }
    public void clear() {
    HashMap.this.clear();
    }
    }
    
    /**
    * Returns a {@link Set} view of the mappings contained in this map.
    * The set is backed by the map, so changes to the map are
    * reflected in the set, and vice-versa. If the map is modified
    * while an iteration over the set is in progress (except through
    * the iterator's own <tt>remove</tt> operation, or through the
    * <tt>setValue</tt> operation on a map entry returned by the
    * iterator) the results of the iteration are undefined. The set
    * supports element removal, which removes the corresponding
    * mapping from the map, via the <tt>Iterator.remove</tt>,
    * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
    * <tt>clear</tt> operations. It does not support the
    * <tt>add</tt> or <tt>addAll</tt> operations.
    *
    * @return a set view of the mappings contained in this map
    */
    public Set<Map.Entry<K,V>> entrySet() {
    return entrySet0();
    }
    
    private Set<Map.Entry<K,V>> entrySet0() {
    Set<Map.Entry<K,V>> es = entrySet;
    return es != null ? es : (entrySet = new EntrySet());
    }
    
    private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public Iterator<Map.Entry<K,V>> iterator() {
    return newEntryIterator();
    }
    public boolean contains(Object o) {
    if (!(o instanceof Map.Entry))
    return false;
    Map.Entry<K,V> e = (Map.Entry<K,V>) o;
    Entry<K,V> candidate = getEntry(e.getKey());
    return candidate != null && candidate.equals(e);
    }
    public boolean remove(Object o) {
    return removeMapping(o) != null;
    }
    public int size() {
    return size;
    }
    public void clear() {
    HashMap.this.clear();
    }
    }
    
    /**
    * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
    * serialize it).
    *
    * @serialData The <i>capacity</i> of the HashMap (the length of the
    * bucket array) is emitted (int), followed by the
    * <i>size</i> (an int, the number of key-value
    * mappings), followed by the key (Object) and value (Object)
    * for each key-value mapping. The key-value mappings are
    * emitted in no particular order.
    */
    private void writeObject(java.io.ObjectOutputStream s)
    throws IOException
    {
    Iterator<Map.Entry<K,V>> i =
    (size > 0) ? entrySet0().iterator() : null;
    
    // Write out the threshold, loadfactor, and any hidden stuff
    s.defaultWriteObject();
    
    // Write out number of buckets
    s.writeInt(table.length);
    
    // Write out size (number of Mappings)
    s.writeInt(size);
    
    // Write out keys and values (alternating)
    if (size > 0) {
    for(Map.Entry<K,V> e : entrySet0()) {
    s.writeObject(e.getKey());
    s.writeObject(e.getValue());
    }
    }
    }
    
    private static final long serialVersionUID = 362498820763181265L;
    
    /**
    * Reconstitute the {@code HashMap} instance from a stream (i.e.,
    * deserialize it).
    */
    private void readObject(java.io.ObjectInputStream s)
    throws IOException, ClassNotFoundException
    {
    // Read in the threshold (ignored), loadfactor, and any hidden stuff
    s.defaultReadObject();
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
    throw new InvalidObjectException("Illegal load factor: " +
    loadFactor);
    
    // set hashSeed (can only happen after VM boot)
    Holder.UNSAFE.putIntVolatile(this, Holder.HASHSEED_OFFSET,
    sun.misc.Hashing.randomHashSeed(this));
    
    // Read in number of buckets and allocate the bucket array;
    s.readInt(); // ignored
    
    // Read number of mappings
    int mappings = s.readInt();
    if (mappings < 0)
    throw new InvalidObjectException("Illegal mappings count: " +
    mappings);
    
    int initialCapacity = (int) Math.min(
    // capacity chosen by number of mappings
    // and desired load (if >= 0.25)
    mappings * Math.min(1 / loadFactor, 4.0f),
    // we have limits...
    HashMap.MAXIMUM_CAPACITY);
    int capacity = 1;
    // find smallest power of two which holds all mappings
    while (capacity < initialCapacity) {
    capacity <<= 1;
    }
    
    table = new Entry[capacity];
    threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
    useAltHashing = sun.misc.VM.isBooted() &&
    (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
    
    init(); // Give subclass a chance to do its thing.
    
    // Read the keys and values, and put the mappings in the HashMap
    for (int i=0; i<mappings; i++) {
    K key = (K) s.readObject();
    V value = (V) s.readObject();
    putForCreate(key, value);
    }
    }
    
    // These methods are used when serializing HashSets
    int capacity() { return table.length; }
    float loadFactor() { return loadFactor; }
    }
  • 相关阅读:
    Flash代码执行原理与性能优化笔记
    服务器自建git
    列表删除
    mysql的隔离级别实践
    py2和py3的字符编码
    Django外键(ForeignKey)操作以及related_name的作用
    python多个装饰器嵌套
    git diff使用
    .gitignore 只包含几个文件
    三层菜单字典练习
  • 原文地址:https://www.cnblogs.com/yongwangzhiqian/p/3941066.html
Copyright © 2020-2023  润新知