• Pytorch使用多GPU


    在caffe中训练的时候如果使用多GPU则直接在运行程序的时候指定GPU的index即可,但是在Pytorch中则需要在声明模型之后,对声明的模型进行初始化,如:

    cnn = DataParallel(AlexNet())


    之后直接运行Pytorch之后则默认使用所有的GPU,为了说明上述初始化的作用,我用了一组畸变图像的数据集,写了一个Resent的模块,过了50个epoch,对比一下实验耗时的差别,代码如下:

      1 # -*- coding: utf-8 -*-
      2 # Implementation of https://arxiv.org/pdf/1512.03385.pdf/
      3 # See section 4.2 for model architecture on CIFAR-10.
      4 # Some part of the code was referenced below.
      5 # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
      6 
      7 import os
      8 from PIL import Image
      9 import time
     10 
     11 import torch
     12 import torch.nn as nn
     13 import torchvision.datasets as dsets
     14 import torchvision.transforms as transforms
     15 from torch.autograd import Variable
     16 import torch.utils.data as data
     17 from torch.nn import DataParallel
     18 
     19 
     20 kwargs = {'num_workers': 1, 'pin_memory': True}
     21 # def my dataloader, return the data and corresponding label
     22 
     23 
     24 def default_loader(path):
     25     return Image.open(path).convert('RGB')
     26 
     27 
     28 class myImageFloder(data.Dataset):  # Class inheritance
     29     def __init__(self, root, label, transform=None, target_transform=None, loader=default_loader):
     30         fh = open(label)
     31         c = 0
     32         imgs = []
     33         class_names = []
     34         for line in fh.readlines():
     35             if c == 0:
     36                 class_names = [n.strip() for n in line.rstrip().split('    ')]
     37             else:
     38                 cls = line.split()  # cls is a list
     39                 fn = cls.pop(0)
     40                 if os.path.isfile(os.path.join(root, fn)):
     41                     imgs.append((fn, tuple([float(v) for v in cls])))  # imgs is the list,and the content is the tuple
     42                     # we can use the append way to append the element for list
     43             c = c + 1
     44         self.root = root
     45         self.imgs = imgs
     46         self.classes = class_names
     47         self.transform = transform
     48         self.target_transform = target_transform
     49         self.loader = loader
     50 
     51     def __getitem__(self, index):
     52         fn, label = self.imgs[index]  # eventhough the imgs is just a list, it can return the elements of is
     53         # in a proper way
     54         img = self.loader(os.path.join(self.root, fn))
     55         if self.transform is not None:
     56             img = self.transform(img)
     57         return img, torch.Tensor(label)
     58 
     59     def __len__(self):
     60         return len(self.imgs)
     61 
     62     def getName(self):
     63         return self.classes
     64 
     65 mytransform = transforms.Compose([transforms.ToTensor()])  # almost dont do any operation
     66 train_data_root = "/home/ying/shiyongjie/rjp/generate_distortion_image_2016_03_15/0_Distorted_Image/Training"
     67 test_data_root = "/home/ying/shiyongjie/rjp/generate_distortion_image_2016_03_15/0_Distorted_Image/Testing"
     68 train_label = "/home/ying/shiyongjie/rjp/generate_distortion_image_2016_03_15/0_Distorted_Image/NameList_train.txt"
     69 test_label = "/home/ying/shiyongjie/rjp/generate_distortion_image_2016_03_15/0_Distorted_Image/NameList_test.txt"
     70 
     71 train_loader = torch.utils.data.DataLoader(
     72     myImageFloder(root=train_data_root, label=train_label, transform=mytransform),
     73     batch_size=64, shuffle=True, **kwargs)
     74 
     75 test_loader = torch.utils.data.DataLoader(
     76     myImageFloder(root=test_data_root, label=test_label, transform=mytransform),
     77     batch_size=64, shuffle=True, **kwargs)
     78 
     79 
     80 # 3x3 Convolution
     81 def conv3x3(in_channels, out_channels, stride=1):
     82     return nn.Conv2d(in_channels, out_channels, kernel_size=3,
     83                      stride=stride, padding=1, bias=False)
     84 
     85 
     86 # Residual Block
     87 class ResidualBlock(nn.Module):
     88     def __init__(self, in_channels, out_channels, stride=1, downsample=None):
     89         super(ResidualBlock, self).__init__()
     90         self.conv1 = conv3x3(in_channels, out_channels, stride)  # kernel size is default 3
     91         self.bn1 = nn.BatchNorm2d(out_channels)
     92         self.relu = nn.ReLU(inplace=True)
     93         self.conv2 = conv3x3(out_channels, out_channels)
     94         self.bn2 = nn.BatchNorm2d(out_channels)
     95         self.downsample = downsample
     96 
     97     def forward(self, x):
     98         residual = x
     99         out = self.conv1(x)
    100         out = self.bn1(out)
    101         out = self.relu(out)
    102         out = self.conv2(out)
    103         out = self.bn2(out)
    104         if self.downsample:
    105             residual = self.downsample(x)
    106         out += residual
    107         out = self.relu(out)
    108         return out
    109 
    110 
    111 # ResNet Module
    112 class ResNet(nn.Module):
    113     def __init__(self, block, layers, num_classes=1):
    114         super(ResNet, self).__init__()
    115         self.in_channels = 16
    116         self.conv = conv3x3(3, 16)
    117         self.bn = nn.BatchNorm2d(16)
    118         self.relu = nn.ReLU(inplace=True)
    119         self.layer1 = self.make_layer(block, 16, layers[0])
    120         self.layer2 = self.make_layer(block, 32, layers[0], 2)
    121         self.layer3 = self.make_layer(block, 64, layers[1], 2)  # the input arg is blocks and the stride
    122         self.layer4 = self.make_layer(block, 128, layers[1], 2)
    123         self.layer5 = self.make_layer(block, 256, layers[1], 2)
    124         self.avg_pool = nn.AvgPool2d(kernel_size=8,stride=8)  # 2*2
    125         self.fc = nn.Linear(256*2*2, num_classes)
    126 
    127     def make_layer(self, block, out_channels, blocks, stride=1):
    128         downsample = None
    129         if (stride != 1) or (self.in_channels != out_channels):  # the input channel is not consistant with the output's
    130             downsample = nn.Sequential(  # do the downsample, def a conv, for example: 256*256*16 -> 128*128*32
    131                 conv3x3(self.in_channels, out_channels, stride=stride),
    132                 nn.BatchNorm2d(out_channels))
    133         layers = []
    134         layers.append(block(self.in_channels, out_channels, stride, downsample))
    135         self.in_channels = out_channels  # update the input channel and the output channel
    136         for i in range(1, blocks):  # reduce a block because the first block is already appened
    137             layers.append(block(out_channels, out_channels))  # 32*32 -> 8*8
    138         return nn.Sequential(*layers)
    139 
    140     def forward(self, x):
    141         out = self.conv(x)
    142         out = self.bn(out)
    143         out = self.relu(out)
    144         out = self.layer1(out)
    145         out = self.layer2(out)
    146         out = self.layer3(out)
    147         out=self.layer4(out)
    148         out=self.layer5(out)
    149         out = self.avg_pool(out)
    150         out = out.view(out.size(0), -1)
    151         out = self.fc(out)
    152         return out
    153 
    154 
    155 resnet = DataParallel(ResNet(ResidualBlock, [3, 3, 3]))
    156 resnet.cuda()
    157 
    158 # Loss and Optimizer
    159 criterion = nn.MSELoss()
    160 lr = 0.001
    161 optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
    162 
    163 # Training
    164 start=time.clock()
    165 for epoch in range(50):
    166     for i, (images, labels) in enumerate(train_loader):
    167         images = Variable(images.cuda())
    168         labels = Variable(labels.cuda())
    169 
    170         # Forward + Backward + Optimize
    171         optimizer.zero_grad()
    172         outputs = resnet(images)
    173         loss = criterion(outputs, labels)
    174         loss.backward()
    175         optimizer.step()
    176 
    177         if (i + 1) % 100 == 0:
    178             print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" % (epoch + 1, 80, i + 1, 500, loss.data[0]))
    179 
    180     # Decaying Learning Rate
    181     if (epoch + 1) % 20 == 0:
    182         lr /= 3
    183         optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
    184 elapsed=time.clock()-start
    185 print("time used:",elapsed)
    186 #         # Test
    187 # correct = 0
    188 # total = 0
    189 # for images, labels in test_loader:
    190 #     images = Variable(images.cuda())
    191 #     outputs = resnet(images)
    192 #     _, predicted = torch.max(outputs.data, 1)
    193 #     total += labels.size(0)
    194 #     correct += (predicted.cpu() == labels).sum()
    195 #
    196 # print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
    197 
    198 # Save the Model
    199 torch.save(resnet.state_dict(), 'resnet.pkl')

    作为对比实验,我们同时把ResNet的声明方式修改为

     1 resnet = ResNet(ResidualBlock, [3, 3, 3])

    其余不变,再运行程序的时候不指定GPU,直接python resnet.py,在声明DataParallel时,运行耗时结果如下:

    ('time used:', 17124.861335999998),watch -n 1 nvidia-smi确实显示占用两块GPU

    在不声明DataParallel时,实验运行结果耗时如下:

    ('time used:', 30318.149681000003),watch -n 1 nvidia-smi确实显示占用一块GPU

    可以看出,在声明DataParallel时时间压缩了近一半,所以在声明DataParalle是使用多GPU运行Pytorch的一种方法。

    官方的doc也给出了多GPU使用的例子以及部分数据在GPU与部分数据在CPU上运行的例子

    以下是两组实验结果的输出:

    DataParalle初始化

      1 Epoch [1/80], Iter [100/500] Loss: 916.5578
      2 
      3 Epoch [1/80], Iter [200/500] Loss: 172.2591
      4 
      5 Epoch [1/80], Iter [300/500] Loss: 179.8360
      6 
      7 Epoch [1/80], Iter [400/500] Loss: 259.6867
      8 
      9 Epoch [1/80], Iter [500/500] Loss: 244.0616
     10 
     11 Epoch [1/80], Iter [600/500] Loss: 74.7015
     12 
     13 Epoch [1/80], Iter [700/500] Loss: 63.1657
     14 
     15 Epoch [1/80], Iter [800/500] Loss: 90.3517
     16 
     17 Epoch [1/80], Iter [900/500] Loss: 70.4562
     18 
     19 Epoch [2/80], Iter [100/500] Loss: 52.3249
     20 
     21 Epoch [2/80], Iter [200/500] Loss: 129.1855
     22 
     23 Epoch [2/80], Iter [300/500] Loss: 110.0157
     24 
     25 Epoch [2/80], Iter [400/500] Loss: 64.9313
     26 
     27 Epoch [2/80], Iter [500/500] Loss: 87.8385
     28 
     29 Epoch [2/80], Iter [600/500] Loss: 118.5828
     30 
     31 Epoch [2/80], Iter [700/500] Loss: 123.9575
     32 
     33 Epoch [2/80], Iter [800/500] Loss: 79.1908
     34 
     35 Epoch [2/80], Iter [900/500] Loss: 61.8099
     36 
     37 Epoch [3/80], Iter [100/500] Loss: 50.4294
     38 
     39 Epoch [3/80], Iter [200/500] Loss: 106.8135
     40 
     41 Epoch [3/80], Iter [300/500] Loss: 83.2198
     42 
     43 Epoch [3/80], Iter [400/500] Loss: 60.7116
     44 
     45 Epoch [3/80], Iter [500/500] Loss: 101.9553
     46 
     47 Epoch [3/80], Iter [600/500] Loss: 64.6967
     48 
     49 Epoch [3/80], Iter [700/500] Loss: 66.2446
     50 
     51 Epoch [3/80], Iter [800/500] Loss: 81.1825
     52 
     53 Epoch [3/80], Iter [900/500] Loss: 53.9905
     54 
     55 Epoch [4/80], Iter [100/500] Loss: 76.2977
     56 
     57 Epoch [4/80], Iter [200/500] Loss: 18.4255
     58 
     59 Epoch [4/80], Iter [300/500] Loss: 57.6188
     60 
     61 Epoch [4/80], Iter [400/500] Loss: 45.6235
     62 
     63 Epoch [4/80], Iter [500/500] Loss: 82.9265
     64 
     65 Epoch [4/80], Iter [600/500] Loss: 119.6085
     66 
     67 Epoch [4/80], Iter [700/500] Loss: 53.1355
     68 
     69 Epoch [4/80], Iter [800/500] Loss: 29.5248
     70 
     71 Epoch [4/80], Iter [900/500] Loss: 57.0401
     72 
     73 Epoch [5/80], Iter [100/500] Loss: 47.2671
     74 
     75 Epoch [5/80], Iter [200/500] Loss: 31.6928
     76 
     77 Epoch [5/80], Iter [300/500] Loss: 38.0040
     78 
     79 Epoch [5/80], Iter [400/500] Loss: 24.5184
     80 
     81 Epoch [5/80], Iter [500/500] Loss: 33.8515
     82 
     83 Epoch [5/80], Iter [600/500] Loss: 43.6560
     84 
     85 Epoch [5/80], Iter [700/500] Loss: 68.2500
     86 
     87 Epoch [5/80], Iter [800/500] Loss: 30.8259
     88 
     89 Epoch [5/80], Iter [900/500] Loss: 43.9696
     90 
     91 Epoch [6/80], Iter [100/500] Loss: 22.4120
     92 
     93 Epoch [6/80], Iter [200/500] Loss: 45.5722
     94 
     95 Epoch [6/80], Iter [300/500] Loss: 26.8331
     96 
     97 Epoch [6/80], Iter [400/500] Loss: 58.1139
     98 
     99 Epoch [6/80], Iter [500/500] Loss: 12.8767
    100 
    101 Epoch [6/80], Iter [600/500] Loss: 26.6725
    102 
    103 Epoch [6/80], Iter [700/500] Loss: 31.9800
    104 
    105 Epoch [6/80], Iter [800/500] Loss: 91.2332
    106 
    107 Epoch [6/80], Iter [900/500] Loss: 44.1361
    108 
    109 Epoch [7/80], Iter [100/500] Loss: 13.1401
    110 
    111 Epoch [7/80], Iter [200/500] Loss: 20.9435
    112 
    113 Epoch [7/80], Iter [300/500] Loss: 28.0944
    114 
    115 Epoch [7/80], Iter [400/500] Loss: 24.0240
    116 
    117 Epoch [7/80], Iter [500/500] Loss: 43.3279
    118 
    119 Epoch [7/80], Iter [600/500] Loss: 23.3077
    120 
    121 Epoch [7/80], Iter [700/500] Loss: 32.9658
    122 
    123 Epoch [7/80], Iter [800/500] Loss: 27.2044
    124 
    125 Epoch [7/80], Iter [900/500] Loss: 25.5850
    126 
    127 Epoch [8/80], Iter [100/500] Loss: 39.7642
    128 
    129 Epoch [8/80], Iter [200/500] Loss: 17.7421
    130 
    131 Epoch [8/80], Iter [300/500] Loss: 29.8965
    132 
    133 Epoch [8/80], Iter [400/500] Loss: 20.6153
    134 
    135 Epoch [8/80], Iter [500/500] Loss: 43.0224
    136 
    137 Epoch [8/80], Iter [600/500] Loss: 58.1552
    138 
    139 Epoch [8/80], Iter [700/500] Loss: 19.1967
    140 
    141 Epoch [8/80], Iter [800/500] Loss: 34.9122
    142 
    143 Epoch [8/80], Iter [900/500] Loss: 15.0651
    144 
    145 Epoch [9/80], Iter [100/500] Loss: 18.5950
    146 
    147 Epoch [9/80], Iter [200/500] Loss: 36.1891
    148 
    149 Epoch [9/80], Iter [300/500] Loss: 22.4936
    150 
    151 Epoch [9/80], Iter [400/500] Loss: 14.8044
    152 
    153 Epoch [9/80], Iter [500/500] Loss: 16.6958
    154 
    155 Epoch [9/80], Iter [600/500] Loss: 24.8461
    156 
    157 Epoch [9/80], Iter [700/500] Loss: 13.7112
    158 
    159 Epoch [9/80], Iter [800/500] Loss: 21.2906
    160 
    161 Epoch [9/80], Iter [900/500] Loss: 31.6950
    162 
    163 Epoch [10/80], Iter [100/500] Loss: 20.7707
    164 
    165 Epoch [10/80], Iter [200/500] Loss: 15.6260
    166 
    167 Epoch [10/80], Iter [300/500] Loss: 28.5737
    168 
    169 Epoch [10/80], Iter [400/500] Loss: 36.6791
    170 
    171 Epoch [10/80], Iter [500/500] Loss: 38.9839
    172 
    173 Epoch [10/80], Iter [600/500] Loss: 14.4459
    174 
    175 Epoch [10/80], Iter [700/500] Loss: 10.0907
    176 
    177 Epoch [10/80], Iter [800/500] Loss: 17.9035
    178 
    179 Epoch [10/80], Iter [900/500] Loss: 24.5759
    180 
    181 Epoch [11/80], Iter [100/500] Loss: 19.8531
    182 
    183 Epoch [11/80], Iter [200/500] Loss: 15.7126
    184 
    185 Epoch [11/80], Iter [300/500] Loss: 18.0198
    186 
    187 Epoch [11/80], Iter [400/500] Loss: 19.3038
    188 
    189 Epoch [11/80], Iter [500/500] Loss: 27.4435
    190 
    191 Epoch [11/80], Iter [600/500] Loss: 18.1086
    192 
    193 Epoch [11/80], Iter [700/500] Loss: 10.8124
    194 
    195 Epoch [11/80], Iter [800/500] Loss: 31.2389
    196 
    197 Epoch [11/80], Iter [900/500] Loss: 14.4881
    198 
    199 Epoch [12/80], Iter [100/500] Loss: 10.6320
    200 
    201 Epoch [12/80], Iter [200/500] Loss: 26.8394
    202 
    203 Epoch [12/80], Iter [300/500] Loss: 16.0246
    204 
    205 Epoch [12/80], Iter [400/500] Loss: 16.3263
    206 
    207 Epoch [12/80], Iter [500/500] Loss: 24.5880
    208 
    209 Epoch [12/80], Iter [600/500] Loss: 15.7498
    210 
    211 Epoch [12/80], Iter [700/500] Loss: 11.4933
    212 
    213 Epoch [12/80], Iter [800/500] Loss: 9.7252
    214 
    215 Epoch [12/80], Iter [900/500] Loss: 31.6774
    216 
    217 Epoch [13/80], Iter [100/500] Loss: 21.1929
    218 
    219 Epoch [13/80], Iter [200/500] Loss: 17.0953
    220 
    221 Epoch [13/80], Iter [300/500] Loss: 21.1883
    222 
    223 Epoch [13/80], Iter [400/500] Loss: 15.9005
    224 
    225 Epoch [13/80], Iter [500/500] Loss: 14.7924
    226 
    227 Epoch [13/80], Iter [600/500] Loss: 12.4324
    228 
    229 Epoch [13/80], Iter [700/500] Loss: 12.0840
    230 
    231 Epoch [13/80], Iter [800/500] Loss: 30.9664
    232 
    233 Epoch [13/80], Iter [900/500] Loss: 14.9601
    234 
    235 Epoch [14/80], Iter [100/500] Loss: 6.5126
    236 
    237 Epoch [14/80], Iter [200/500] Loss: 11.3227
    238 
    239 Epoch [14/80], Iter [300/500] Loss: 12.9980
    240 
    241 Epoch [14/80], Iter [400/500] Loss: 13.8523
    242 
    243 Epoch [14/80], Iter [500/500] Loss: 10.6771
    244 
    245 Epoch [14/80], Iter [600/500] Loss: 7.3953
    246 
    247 Epoch [14/80], Iter [700/500] Loss: 14.6829
    248 
    249 Epoch [14/80], Iter [800/500] Loss: 15.6956
    250 
    251 Epoch [14/80], Iter [900/500] Loss: 21.8876
    252 
    253 Epoch [15/80], Iter [100/500] Loss: 5.1943
    254 
    255 Epoch [15/80], Iter [200/500] Loss: 13.0731
    256 
    257 Epoch [15/80], Iter [300/500] Loss: 6.8931
    258 
    259 Epoch [15/80], Iter [400/500] Loss: 15.3212
    260 
    261 Epoch [15/80], Iter [500/500] Loss: 8.1775
    262 
    263 Epoch [15/80], Iter [600/500] Loss: 11.5664
    264 
    265 Epoch [15/80], Iter [700/500] Loss: 5.5951
    266 
    267 Epoch [15/80], Iter [800/500] Loss: 10.9075
    268 
    269 Epoch [15/80], Iter [900/500] Loss: 14.8503
    270 
    271 Epoch [16/80], Iter [100/500] Loss: 19.5184
    272 
    273 Epoch [16/80], Iter [200/500] Loss: 10.3570
    274 
    275 Epoch [16/80], Iter [300/500] Loss: 10.0997
    276 
    277 Epoch [16/80], Iter [400/500] Loss: 9.7350
    278 
    279 Epoch [16/80], Iter [500/500] Loss: 11.3000
    280 
    281 Epoch [16/80], Iter [600/500] Loss: 21.6213
    282 
    283 Epoch [16/80], Iter [700/500] Loss: 9.7907
    284 
    285 Epoch [16/80], Iter [800/500] Loss: 10.0128
    286 
    287 Epoch [16/80], Iter [900/500] Loss: 10.7869
    288 
    289 Epoch [17/80], Iter [100/500] Loss: 9.2015
    290 
    291 Epoch [17/80], Iter [200/500] Loss: 7.3021
    292 
    293 Epoch [17/80], Iter [300/500] Loss: 5.9662
    294 
    295 Epoch [17/80], Iter [400/500] Loss: 17.5215
    296 
    297 Epoch [17/80], Iter [500/500] Loss: 7.3349
    298 
    299 Epoch [17/80], Iter [600/500] Loss: 8.5626
    300 
    301 Epoch [17/80], Iter [700/500] Loss: 12.7575
    302 
    303 Epoch [17/80], Iter [800/500] Loss: 10.7792
    304 
    305 Epoch [17/80], Iter [900/500] Loss: 7.0889
    306 
    307 Epoch [18/80], Iter [100/500] Loss: 10.5613
    308 
    309 Epoch [18/80], Iter [200/500] Loss: 3.0777
    310 
    311 Epoch [18/80], Iter [300/500] Loss: 6.3598
    312 
    313 Epoch [18/80], Iter [400/500] Loss: 7.9515
    314 
    315 Epoch [18/80], Iter [500/500] Loss: 10.8023
    316 
    317 Epoch [18/80], Iter [600/500] Loss: 7.3443
    318 
    319 Epoch [18/80], Iter [700/500] Loss: 8.0862
    320 
    321 Epoch [18/80], Iter [800/500] Loss: 15.2795
    322 
    323 Epoch [18/80], Iter [900/500] Loss: 10.2788
    324 
    325 Epoch [19/80], Iter [100/500] Loss: 5.0786
    326 
    327 Epoch [19/80], Iter [200/500] Loss: 8.8248
    328 
    329 Epoch [19/80], Iter [300/500] Loss: 4.9262
    330 
    331 Epoch [19/80], Iter [400/500] Loss: 7.8992
    332 
    333 Epoch [19/80], Iter [500/500] Loss: 13.1279
    334 
    335 Epoch [19/80], Iter [600/500] Loss: 8.2703
    336 
    337 Epoch [19/80], Iter [700/500] Loss: 4.1547
    338 
    339 Epoch [19/80], Iter [800/500] Loss: 9.0542
    340 
    341 Epoch [19/80], Iter [900/500] Loss: 6.7904
    342 
    343 Epoch [20/80], Iter [100/500] Loss: 8.6150
    344 
    345 Epoch [20/80], Iter [200/500] Loss: 3.7212
    346 
    347 Epoch [20/80], Iter [300/500] Loss: 6.2832
    348 
    349 Epoch [20/80], Iter [400/500] Loss: 10.1591
    350 
    351 Epoch [20/80], Iter [500/500] Loss: 9.7668
    352 
    353 Epoch [20/80], Iter [600/500] Loss: 4.7498
    354 
    355 Epoch [20/80], Iter [700/500] Loss: 4.8831
    356 
    357 Epoch [20/80], Iter [800/500] Loss: 7.7877
    358 
    359 Epoch [20/80], Iter [900/500] Loss: 8.5114
    360 
    361 Epoch [21/80], Iter [100/500] Loss: 2.1853
    362 
    363 Epoch [21/80], Iter [200/500] Loss: 5.8741
    364 
    365 Epoch [21/80], Iter [300/500] Loss: 5.3676
    366 
    367 Epoch [21/80], Iter [400/500] Loss: 3.1155
    368 
    369 Epoch [21/80], Iter [500/500] Loss: 4.2433
    370 
    371 Epoch [21/80], Iter [600/500] Loss: 1.9783
    372 
    373 Epoch [21/80], Iter [700/500] Loss: 2.7622
    374 
    375 Epoch [21/80], Iter [800/500] Loss: 2.0112
    376 
    377 Epoch [21/80], Iter [900/500] Loss: 2.2692
    378 
    379 Epoch [22/80], Iter [100/500] Loss: 2.1882
    380 
    381 Epoch [22/80], Iter [200/500] Loss: 4.2540
    382 
    383 Epoch [22/80], Iter [300/500] Loss: 4.0126
    384 
    385 Epoch [22/80], Iter [400/500] Loss: 2.2220
    386 
    387 Epoch [22/80], Iter [500/500] Loss: 2.4755
    388 
    389 Epoch [22/80], Iter [600/500] Loss: 3.0793
    390 
    391 Epoch [22/80], Iter [700/500] Loss: 1.9128
    392 
    393 Epoch [22/80], Iter [800/500] Loss: 4.8721
    394 
    395 Epoch [22/80], Iter [900/500] Loss: 2.1349
    396 
    397 Epoch [23/80], Iter [100/500] Loss: 1.8705
    398 
    399 Epoch [23/80], Iter [200/500] Loss: 2.4326
    400 
    401 Epoch [23/80], Iter [300/500] Loss: 1.5636
    402 
    403 Epoch [23/80], Iter [400/500] Loss: 2.0465
    404 
    405 Epoch [23/80], Iter [500/500] Loss: 1.5183
    406 
    407 Epoch [23/80], Iter [600/500] Loss: 2.2711
    408 
    409 Epoch [23/80], Iter [700/500] Loss: 2.8997
    410 
    411 Epoch [23/80], Iter [800/500] Loss: 2.6150
    412 
    413 Epoch [23/80], Iter [900/500] Loss: 2.8083
    414 
    415 Epoch [24/80], Iter [100/500] Loss: 2.7177
    416 
    417 Epoch [24/80], Iter [200/500] Loss: 3.2044
    418 
    419 Epoch [24/80], Iter [300/500] Loss: 3.8137
    420 
    421 Epoch [24/80], Iter [400/500] Loss: 1.9400
    422 
    423 Epoch [24/80], Iter [500/500] Loss: 2.3550
    424 
    425 Epoch [24/80], Iter [600/500] Loss: 1.6304
    426 
    427 Epoch [24/80], Iter [700/500] Loss: 1.1287
    428 
    429 Epoch [24/80], Iter [800/500] Loss: 2.1436
    430 
    431 Epoch [24/80], Iter [900/500] Loss: 1.3761
    432 
    433 Epoch [25/80], Iter [100/500] Loss: 1.9115
    434 
    435 Epoch [25/80], Iter [200/500] Loss: 0.9423
    436 
    437 Epoch [25/80], Iter [300/500] Loss: 1.1732
    438 
    439 Epoch [25/80], Iter [400/500] Loss: 1.8946
    440 
    441 Epoch [25/80], Iter [500/500] Loss: 1.4359
    442 
    443 Epoch [25/80], Iter [600/500] Loss: 2.7499
    444 
    445 Epoch [25/80], Iter [700/500] Loss: 3.2734
    446 
    447 Epoch [25/80], Iter [800/500] Loss: 1.5863
    448 
    449 Epoch [25/80], Iter [900/500] Loss: 2.8276
    450 
    451 Epoch [26/80], Iter [100/500] Loss: 3.3783
    452 
    453 Epoch [26/80], Iter [200/500] Loss: 1.6336
    454 
    455 Epoch [26/80], Iter [300/500] Loss: 1.8298
    456 
    457 Epoch [26/80], Iter [400/500] Loss: 1.1775
    458 
    459 Epoch [26/80], Iter [500/500] Loss: 2.5811
    460 
    461 Epoch [26/80], Iter [600/500] Loss: 1.2587
    462 
    463 Epoch [26/80], Iter [700/500] Loss: 2.3547
    464 
    465 Epoch [26/80], Iter [800/500] Loss: 3.2238
    466 
    467 Epoch [26/80], Iter [900/500] Loss: 1.8571
    468 
    469 Epoch [27/80], Iter [100/500] Loss: 1.9582
    470 
    471 Epoch [27/80], Iter [200/500] Loss: 0.8752
    472 
    473 Epoch [27/80], Iter [300/500] Loss: 1.5140
    474 
    475 Epoch [27/80], Iter [400/500] Loss: 1.4624
    476 
    477 Epoch [27/80], Iter [500/500] Loss: 3.6735
    478 
    479 Epoch [27/80], Iter [600/500] Loss: 2.5618
    480 
    481 Epoch [27/80], Iter [700/500] Loss: 1.3707
    482 
    483 Epoch [27/80], Iter [800/500] Loss: 1.2286
    484 
    485 Epoch [27/80], Iter [900/500] Loss: 2.4623
    486 
    487 Epoch [28/80], Iter [100/500] Loss: 0.8966
    488 
    489 Epoch [28/80], Iter [200/500] Loss: 1.4363
    490 
    491 Epoch [28/80], Iter [300/500] Loss: 1.3229
    492 
    493 Epoch [28/80], Iter [400/500] Loss: 1.4402
    494 
    495 Epoch [28/80], Iter [500/500] Loss: 1.4920
    496 
    497 Epoch [28/80], Iter [600/500] Loss: 1.9604
    498 
    499 Epoch [28/80], Iter [700/500] Loss: 3.1165
    500 
    501 Epoch [28/80], Iter [800/500] Loss: 1.0391
    502 
    503 Epoch [28/80], Iter [900/500] Loss: 2.5201
    504 
    505 Epoch [29/80], Iter [100/500] Loss: 1.8787
    506 
    507 Epoch [29/80], Iter [200/500] Loss: 0.9840
    508 
    509 Epoch [29/80], Iter [300/500] Loss: 1.4460
    510 
    511 Epoch [29/80], Iter [400/500] Loss: 2.2886
    512 
    513 Epoch [29/80], Iter [500/500] Loss: 1.4231
    514 
    515 Epoch [29/80], Iter [600/500] Loss: 1.4980
    516 
    517 Epoch [29/80], Iter [700/500] Loss: 2.3995
    518 
    519 Epoch [29/80], Iter [800/500] Loss: 1.7662
    520 
    521 Epoch [29/80], Iter [900/500] Loss: 2.3659
    522 
    523 Epoch [30/80], Iter [100/500] Loss: 1.9505
    524 
    525 Epoch [30/80], Iter [200/500] Loss: 1.1663
    526 
    527 Epoch [30/80], Iter [300/500] Loss: 0.9471
    528 
    529 Epoch [30/80], Iter [400/500] Loss: 0.9364
    530 
    531 Epoch [30/80], Iter [500/500] Loss: 1.0124
    532 
    533 Epoch [30/80], Iter [600/500] Loss: 1.2437
    534 
    535 Epoch [30/80], Iter [700/500] Loss: 0.8796
    536 
    537 Epoch [30/80], Iter [800/500] Loss: 1.2183
    538 
    539 Epoch [30/80], Iter [900/500] Loss: 2.3959
    540 
    541 Epoch [31/80], Iter [100/500] Loss: 1.4337
    542 
    543 Epoch [31/80], Iter [200/500] Loss: 1.1861
    544 
    545 Epoch [31/80], Iter [300/500] Loss: 1.2915
    546 
    547 Epoch [31/80], Iter [400/500] Loss: 1.0188
    548 
    549 Epoch [31/80], Iter [500/500] Loss: 2.2067
    550 
    551 Epoch [31/80], Iter [600/500] Loss: 2.6476
    552 
    553 Epoch [31/80], Iter [700/500] Loss: 1.1402
    554 
    555 Epoch [31/80], Iter [800/500] Loss: 1.4248
    556 
    557 Epoch [31/80], Iter [900/500] Loss: 1.0669
    558 
    559 Epoch [32/80], Iter [100/500] Loss: 1.5955
    560 
    561 Epoch [32/80], Iter [200/500] Loss: 1.7216
    562 
    563 Epoch [32/80], Iter [300/500] Loss: 1.2304
    564 
    565 Epoch [32/80], Iter [400/500] Loss: 1.7058
    566 
    567 Epoch [32/80], Iter [500/500] Loss: 1.2115
    568 
    569 Epoch [32/80], Iter [600/500] Loss: 1.6176
    570 
    571 Epoch [32/80], Iter [700/500] Loss: 1.3043
    572 
    573 Epoch [32/80], Iter [800/500] Loss: 1.9501
    574 
    575 Epoch [32/80], Iter [900/500] Loss: 1.9035
    576 
    577 Epoch [33/80], Iter [100/500] Loss: 1.9505
    578 
    579 Epoch [33/80], Iter [200/500] Loss: 1.5603
    580 
    581 Epoch [33/80], Iter [300/500] Loss: 1.5528
    582 
    583 Epoch [33/80], Iter [400/500] Loss: 1.4192
    584 
    585 Epoch [33/80], Iter [500/500] Loss: 1.2211
    586 
    587 Epoch [33/80], Iter [600/500] Loss: 1.3927
    588 
    589 Epoch [33/80], Iter [700/500] Loss: 2.3885
    590 
    591 Epoch [33/80], Iter [800/500] Loss: 1.0948
    592 
    593 Epoch [33/80], Iter [900/500] Loss: 1.6951
    594 
    595 Epoch [34/80], Iter [100/500] Loss: 0.9534
    596 
    597 Epoch [34/80], Iter [200/500] Loss: 0.7364
    598 
    599 Epoch [34/80], Iter [300/500] Loss: 1.2372
    600 
    601 Epoch [34/80], Iter [400/500] Loss: 1.6718
    602 
    603 Epoch [34/80], Iter [500/500] Loss: 0.7804
    604 
    605 Epoch [34/80], Iter [600/500] Loss: 2.1848
    606 
    607 Epoch [34/80], Iter [700/500] Loss: 0.6333
    608 
    609 Epoch [34/80], Iter [800/500] Loss: 1.6399
    610 
    611 Epoch [34/80], Iter [900/500] Loss: 0.9555
    612 
    613 Epoch [35/80], Iter [100/500] Loss: 1.5851
    614 
    615 Epoch [35/80], Iter [200/500] Loss: 3.7824
    616 
    617 Epoch [35/80], Iter [300/500] Loss: 2.5642
    618 
    619 Epoch [35/80], Iter [400/500] Loss: 0.8965
    620 
    621 Epoch [35/80], Iter [500/500] Loss: 1.9092
    622 
    623 Epoch [35/80], Iter [600/500] Loss: 1.3729
    624 
    625 Epoch [35/80], Iter [700/500] Loss: 2.2079
    626 
    627 Epoch [35/80], Iter [800/500] Loss: 0.9051
    628 
    629 Epoch [35/80], Iter [900/500] Loss: 1.1845
    630 
    631 Epoch [36/80], Iter [100/500] Loss: 0.8240
    632 
    633 Epoch [36/80], Iter [200/500] Loss: 1.1929
    634 
    635 Epoch [36/80], Iter [300/500] Loss: 1.7051
    636 
    637 Epoch [36/80], Iter [400/500] Loss: 0.7341
    638 
    639 Epoch [36/80], Iter [500/500] Loss: 0.8078
    640 
    641 Epoch [36/80], Iter [600/500] Loss: 0.7525
    642 
    643 Epoch [36/80], Iter [700/500] Loss: 1.5739
    644 
    645 Epoch [36/80], Iter [800/500] Loss: 1.3938
    646 
    647 Epoch [36/80], Iter [900/500] Loss: 0.7145
    648 
    649 Epoch [37/80], Iter [100/500] Loss: 0.9577
    650 
    651 Epoch [37/80], Iter [200/500] Loss: 0.9464
    652 
    653 Epoch [37/80], Iter [300/500] Loss: 1.0931
    654 
    655 Epoch [37/80], Iter [400/500] Loss: 1.0390
    656 
    657 Epoch [37/80], Iter [500/500] Loss: 1.3472
    658 
    659 Epoch [37/80], Iter [600/500] Loss: 0.6312
    660 
    661 Epoch [37/80], Iter [700/500] Loss: 0.6754
    662 
    663 Epoch [37/80], Iter [800/500] Loss: 0.5888
    664 
    665 Epoch [37/80], Iter [900/500] Loss: 3.1377
    666 
    667 Epoch [38/80], Iter [100/500] Loss: 0.8339
    668 
    669 Epoch [38/80], Iter [200/500] Loss: 0.9345
    670 
    671 Epoch [38/80], Iter [300/500] Loss: 0.6615
    672 
    673 Epoch [38/80], Iter [400/500] Loss: 1.6327
    674 
    675 Epoch [38/80], Iter [500/500] Loss: 0.4701
    676 
    677 Epoch [38/80], Iter [600/500] Loss: 1.1513
    678 
    679 Epoch [38/80], Iter [700/500] Loss: 0.9013
    680 
    681 Epoch [38/80], Iter [800/500] Loss: 2.7680
    682 
    683 Epoch [38/80], Iter [900/500] Loss: 1.2733
    684 
    685 Epoch [39/80], Iter [100/500] Loss: 3.0368
    686 
    687 Epoch [39/80], Iter [200/500] Loss: 1.5569
    688 
    689 Epoch [39/80], Iter [300/500] Loss: 0.5049
    690 
    691 Epoch [39/80], Iter [400/500] Loss: 0.4075
    692 
    693 Epoch [39/80], Iter [500/500] Loss: 0.9771
    694 
    695 Epoch [39/80], Iter [600/500] Loss: 0.9003
    696 
    697 Epoch [39/80], Iter [700/500] Loss: 1.6323
    698 
    699 Epoch [39/80], Iter [800/500] Loss: 0.4881
    700 
    701 Epoch [39/80], Iter [900/500] Loss: 2.1344
    702 
    703 Epoch [40/80], Iter [100/500] Loss: 1.2439
    704 
    705 Epoch [40/80], Iter [200/500] Loss: 1.3419
    706 
    707 Epoch [40/80], Iter [300/500] Loss: 0.9575
    708 
    709 Epoch [40/80], Iter [400/500] Loss: 1.4438
    710 
    711 Epoch [40/80], Iter [500/500] Loss: 0.8559
    712 
    713 Epoch [40/80], Iter [600/500] Loss: 1.0400
    714 
    715 Epoch [40/80], Iter [700/500] Loss: 0.9063
    716 
    717 Epoch [40/80], Iter [800/500] Loss: 1.0714
    718 
    719 Epoch [40/80], Iter [900/500] Loss: 0.5098
    720 
    721 Epoch [41/80], Iter [100/500] Loss: 0.5906
    722 
    723 Epoch [41/80], Iter [200/500] Loss: 0.6610
    724 
    725 Epoch [41/80], Iter [300/500] Loss: 0.4230
    726 
    727 Epoch [41/80], Iter [400/500] Loss: 0.6014
    728 
    729 Epoch [41/80], Iter [500/500] Loss: 0.3004
    730 
    731 Epoch [41/80], Iter [600/500] Loss: 0.5606
    732 
    733 Epoch [41/80], Iter [700/500] Loss: 0.4994
    734 
    735 Epoch [41/80], Iter [800/500] Loss: 0.8664
    736 
    737 Epoch [41/80], Iter [900/500] Loss: 0.5302
    738 
    739 Epoch [42/80], Iter [100/500] Loss: 0.2961
    740 
    741 Epoch [42/80], Iter [200/500] Loss: 0.2826
    742 
    743 Epoch [42/80], Iter [300/500] Loss: 0.3575
    744 
    745 Epoch [42/80], Iter [400/500] Loss: 0.3224
    746 
    747 Epoch [42/80], Iter [500/500] Loss: 0.6851
    748 
    749 Epoch [42/80], Iter [600/500] Loss: 0.2997
    750 
    751 Epoch [42/80], Iter [700/500] Loss: 0.3907
    752 
    753 Epoch [42/80], Iter [800/500] Loss: 0.4437
    754 
    755 Epoch [42/80], Iter [900/500] Loss: 0.4847
    756 
    757 Epoch [43/80], Iter [100/500] Loss: 0.5418
    758 
    759 Epoch [43/80], Iter [200/500] Loss: 0.4099
    760 
    761 Epoch [43/80], Iter [300/500] Loss: 0.3339
    762 
    763 Epoch [43/80], Iter [400/500] Loss: 0.5546
    764 
    765 Epoch [43/80], Iter [500/500] Loss: 0.5867
    766 
    767 Epoch [43/80], Iter [600/500] Loss: 0.3540
    768 
    769 Epoch [43/80], Iter [700/500] Loss: 0.4656
    770 
    771 Epoch [43/80], Iter [800/500] Loss: 0.2922
    772 
    773 Epoch [43/80], Iter [900/500] Loss: 0.3042
    774 
    775 Epoch [44/80], Iter [100/500] Loss: 0.6309
    776 
    777 Epoch [44/80], Iter [200/500] Loss: 0.2412
    778 
    779 Epoch [44/80], Iter [300/500] Loss: 0.5505
    780 
    781 Epoch [44/80], Iter [400/500] Loss: 0.4133
    782 
    783 Epoch [44/80], Iter [500/500] Loss: 0.4317
    784 
    785 Epoch [44/80], Iter [600/500] Loss: 0.4152
    786 
    787 Epoch [44/80], Iter [700/500] Loss: 0.6375
    788 
    789 Epoch [44/80], Iter [800/500] Loss: 0.3283
    790 
    791 Epoch [44/80], Iter [900/500] Loss: 0.4399
    792 
    793 Epoch [45/80], Iter [100/500] Loss: 0.2777
    794 
    795 Epoch [45/80], Iter [200/500] Loss: 0.3131
    796 
    797 Epoch [45/80], Iter [300/500] Loss: 0.2451
    798 
    799 Epoch [45/80], Iter [400/500] Loss: 0.5350
    800 
    801 Epoch [45/80], Iter [500/500] Loss: 0.2501
    802 
    803 Epoch [45/80], Iter [600/500] Loss: 0.2076
    804 
    805 Epoch [45/80], Iter [700/500] Loss: 0.2317
    806 
    807 Epoch [45/80], Iter [800/500] Loss: 0.8772
    808 
    809 Epoch [45/80], Iter [900/500] Loss: 0.4162
    810 
    811 Epoch [46/80], Iter [100/500] Loss: 0.3190
    812 
    813 Epoch [46/80], Iter [200/500] Loss: 0.2458
    814 
    815 Epoch [46/80], Iter [300/500] Loss: 0.2976
    816 
    817 Epoch [46/80], Iter [400/500] Loss: 0.3712
    818 
    819 Epoch [46/80], Iter [500/500] Loss: 0.4305
    820 
    821 Epoch [46/80], Iter [600/500] Loss: 0.5143
    822 
    823 Epoch [46/80], Iter [700/500] Loss: 0.2622
    824 
    825 Epoch [46/80], Iter [800/500] Loss: 0.5331
    826 
    827 Epoch [46/80], Iter [900/500] Loss: 0.3598
    828 
    829 Epoch [47/80], Iter [100/500] Loss: 0.2180
    830 
    831 Epoch [47/80], Iter [200/500] Loss: 0.2275
    832 
    833 Epoch [47/80], Iter [300/500] Loss: 0.5302
    834 
    835 Epoch [47/80], Iter [400/500] Loss: 0.3535
    836 
    837 Epoch [47/80], Iter [500/500] Loss: 0.5790
    838 
    839 Epoch [47/80], Iter [600/500] Loss: 0.3741
    840 
    841 Epoch [47/80], Iter [700/500] Loss: 0.5120
    842 
    843 Epoch [47/80], Iter [800/500] Loss: 0.6204
    844 
    845 Epoch [47/80], Iter [900/500] Loss: 0.4902
    846 
    847 Epoch [48/80], Iter [100/500] Loss: 0.2668
    848 
    849 Epoch [48/80], Iter [200/500] Loss: 0.5693
    850 
    851 Epoch [48/80], Iter [300/500] Loss: 0.3328
    852 
    853 Epoch [48/80], Iter [400/500] Loss: 0.2399
    854 
    855 Epoch [48/80], Iter [500/500] Loss: 0.3160
    856 
    857 Epoch [48/80], Iter [600/500] Loss: 0.2944
    858 
    859 Epoch [48/80], Iter [700/500] Loss: 0.2742
    860 
    861 Epoch [48/80], Iter [800/500] Loss: 0.5297
    862 
    863 Epoch [48/80], Iter [900/500] Loss: 0.3755
    864 
    865 Epoch [49/80], Iter [100/500] Loss: 0.2658
    866 
    867 Epoch [49/80], Iter [200/500] Loss: 0.2223
    868 
    869 Epoch [49/80], Iter [300/500] Loss: 0.4348
    870 
    871 Epoch [49/80], Iter [400/500] Loss: 0.2313
    872 
    873 Epoch [49/80], Iter [500/500] Loss: 0.2838
    874 
    875 Epoch [49/80], Iter [600/500] Loss: 0.3415
    876 
    877 Epoch [49/80], Iter [700/500] Loss: 0.3633
    878 
    879 Epoch [49/80], Iter [800/500] Loss: 0.3768
    880 
    881 Epoch [49/80], Iter [900/500] Loss: 0.5177
    882 
    883 Epoch [50/80], Iter [100/500] Loss: 0.3538
    884 
    885 Epoch [50/80], Iter [200/500] Loss: 0.2759
    886 
    887 Epoch [50/80], Iter [300/500] Loss: 0.2255
    888 
    889 Epoch [50/80], Iter [400/500] Loss: 0.3148
    890 
    891 Epoch [50/80], Iter [500/500] Loss: 0.4502
    892 
    893 Epoch [50/80], Iter [600/500] Loss: 0.3382
    894 
    895 Epoch [50/80], Iter [700/500] Loss: 0.8207
    896 
    897 Epoch [50/80], Iter [800/500] Loss: 0.3541
    898 
    899 Epoch [50/80], Iter [900/500] Loss: 0.4090
    900 
    901 ('time used:', 17124.861335999998)
    View Code

    未被DaraParallel初始化

      1 Epoch [1/80], Iter [100/500] Loss: 635.6779
      2 
      3 Epoch [1/80], Iter [200/500] Loss: 247.5514
      4 
      5 Epoch [1/80], Iter [300/500] Loss: 231.7609
      6 
      7 Epoch [1/80], Iter [400/500] Loss: 198.7304
      8 
      9 Epoch [1/80], Iter [500/500] Loss: 207.1028
     10 
     11 Epoch [1/80], Iter [600/500] Loss: 114.7708
     12 
     13 Epoch [1/80], Iter [700/500] Loss: 126.9886
     14 
     15 Epoch [1/80], Iter [800/500] Loss: 160.8622
     16 
     17 Epoch [1/80], Iter [900/500] Loss: 153.8121
     18 
     19 Epoch [2/80], Iter [100/500] Loss: 106.6578
     20 
     21 Epoch [2/80], Iter [200/500] Loss: 91.5044
     22 
     23 Epoch [2/80], Iter [300/500] Loss: 111.4231
     24 
     25 Epoch [2/80], Iter [400/500] Loss: 50.7004
     26 
     27 Epoch [2/80], Iter [500/500] Loss: 58.9242
     28 
     29 Epoch [2/80], Iter [600/500] Loss: 55.2035
     30 
     31 Epoch [2/80], Iter [700/500] Loss: 26.7637
     32 
     33 Epoch [2/80], Iter [800/500] Loss: 52.5472
     34 
     35 Epoch [2/80], Iter [900/500] Loss: 51.7907
     36 
     37 Epoch [3/80], Iter [100/500] Loss: 35.7970
     38 
     39 Epoch [3/80], Iter [200/500] Loss: 59.1204
     40 
     41 Epoch [3/80], Iter [300/500] Loss: 70.5727
     42 
     43 Epoch [3/80], Iter [400/500] Loss: 50.1149
     44 
     45 Epoch [3/80], Iter [500/500] Loss: 26.3628
     46 
     47 Epoch [3/80], Iter [600/500] Loss: 67.3355
     48 
     49 Epoch [3/80], Iter [700/500] Loss: 56.8271
     50 
     51 Epoch [3/80], Iter [800/500] Loss: 46.5803
     52 
     53 Epoch [3/80], Iter [900/500] Loss: 34.9568
     54 
     55 Epoch [4/80], Iter [100/500] Loss: 67.0837
     56 
     57 Epoch [4/80], Iter [200/500] Loss: 36.8596
     58 
     59 Epoch [4/80], Iter [300/500] Loss: 37.6830
     60 
     61 Epoch [4/80], Iter [400/500] Loss: 52.1378
     62 
     63 Epoch [4/80], Iter [500/500] Loss: 104.5909
     64 
     65 Epoch [4/80], Iter [600/500] Loss: 71.3509
     66 
     67 Epoch [4/80], Iter [700/500] Loss: 28.4496
     68 
     69 Epoch [4/80], Iter [800/500] Loss: 56.1399
     70 
     71 Epoch [4/80], Iter [900/500] Loss: 58.7510
     72 
     73 Epoch [5/80], Iter [100/500] Loss: 42.5710
     74 
     75 Epoch [5/80], Iter [200/500] Loss: 25.5430
     76 
     77 Epoch [5/80], Iter [300/500] Loss: 25.9271
     78 
     79 Epoch [5/80], Iter [400/500] Loss: 75.8942
     80 
     81 Epoch [5/80], Iter [500/500] Loss: 70.6782
     82 
     83 Epoch [5/80], Iter [600/500] Loss: 10.7801
     84 
     85 Epoch [5/80], Iter [700/500] Loss: 29.9416
     86 
     87 Epoch [5/80], Iter [800/500] Loss: 47.0781
     88 
     89 Epoch [5/80], Iter [900/500] Loss: 45.4692
     90 
     91 Epoch [6/80], Iter [100/500] Loss: 51.3811
     92 
     93 Epoch [6/80], Iter [200/500] Loss: 30.6207
     94 
     95 Epoch [6/80], Iter [300/500] Loss: 35.4928
     96 
     97 Epoch [6/80], Iter [400/500] Loss: 37.9467
     98 
     99 Epoch [6/80], Iter [500/500] Loss: 36.7505
    100 
    101 Epoch [6/80], Iter [600/500] Loss: 64.3528
    102 
    103 Epoch [6/80], Iter [700/500] Loss: 73.6308
    104 
    105 Epoch [6/80], Iter [800/500] Loss: 33.1290
    106 
    107 Epoch [6/80], Iter [900/500] Loss: 34.2442
    108 
    109 Epoch [7/80], Iter [100/500] Loss: 34.9157
    110 
    111 Epoch [7/80], Iter [200/500] Loss: 26.8041
    112 
    113 Epoch [7/80], Iter [300/500] Loss: 43.5796
    114 
    115 Epoch [7/80], Iter [400/500] Loss: 31.5104
    116 
    117 Epoch [7/80], Iter [500/500] Loss: 41.2132
    118 
    119 Epoch [7/80], Iter [600/500] Loss: 23.1634
    120 
    121 Epoch [7/80], Iter [700/500] Loss: 26.7399
    122 
    123 Epoch [7/80], Iter [800/500] Loss: 60.4979
    124 
    125 Epoch [7/80], Iter [900/500] Loss: 32.8528
    126 
    127 Epoch [8/80], Iter [100/500] Loss: 36.6079
    128 
    129 Epoch [8/80], Iter [200/500] Loss: 49.1552
    130 
    131 Epoch [8/80], Iter [300/500] Loss: 21.2926
    132 
    133 Epoch [8/80], Iter [400/500] Loss: 33.5335
    134 
    135 Epoch [8/80], Iter [500/500] Loss: 50.1770
    136 
    137 Epoch [8/80], Iter [600/500] Loss: 21.9908
    138 
    139 Epoch [8/80], Iter [700/500] Loss: 40.2040
    140 
    141 Epoch [8/80], Iter [800/500] Loss: 22.5460
    142 
    143 Epoch [8/80], Iter [900/500] Loss: 43.9564
    144 
    145 Epoch [9/80], Iter [100/500] Loss: 19.8116
    146 
    147 Epoch [9/80], Iter [200/500] Loss: 8.5169
    148 
    149 Epoch [9/80], Iter [300/500] Loss: 37.0475
    150 
    151 Epoch [9/80], Iter [400/500] Loss: 74.2606
    152 
    153 Epoch [9/80], Iter [500/500] Loss: 16.3256
    154 
    155 Epoch [9/80], Iter [600/500] Loss: 26.0609
    156 
    157 Epoch [9/80], Iter [700/500] Loss: 24.3721
    158 
    159 Epoch [9/80], Iter [800/500] Loss: 37.5132
    160 
    161 Epoch [9/80], Iter [900/500] Loss: 27.4818
    162 
    163 Epoch [10/80], Iter [100/500] Loss: 11.7654
    164 
    165 Epoch [10/80], Iter [200/500] Loss: 9.3536
    166 
    167 Epoch [10/80], Iter [300/500] Loss: 11.6718
    168 
    169 Epoch [10/80], Iter [400/500] Loss: 24.4423
    170 
    171 Epoch [10/80], Iter [500/500] Loss: 25.6966
    172 
    173 Epoch [10/80], Iter [600/500] Loss: 35.2358
    174 
    175 Epoch [10/80], Iter [700/500] Loss: 17.2685
    176 
    177 Epoch [10/80], Iter [800/500] Loss: 22.3965
    178 
    179 Epoch [10/80], Iter [900/500] Loss: 42.6901
    180 
    181 Epoch [11/80], Iter [100/500] Loss: 17.9832
    182 
    183 Epoch [11/80], Iter [200/500] Loss: 18.8705
    184 
    185 Epoch [11/80], Iter [300/500] Loss: 25.3700
    186 
    187 Epoch [11/80], Iter [400/500] Loss: 10.8511
    188 
    189 Epoch [11/80], Iter [500/500] Loss: 18.3028
    190 
    191 Epoch [11/80], Iter [600/500] Loss: 23.2316
    192 
    193 Epoch [11/80], Iter [700/500] Loss: 10.2498
    194 
    195 Epoch [11/80], Iter [800/500] Loss: 14.7609
    196 
    197 Epoch [11/80], Iter [900/500] Loss: 20.1801
    198 
    199 Epoch [12/80], Iter [100/500] Loss: 23.8675
    200 
    201 Epoch [12/80], Iter [200/500] Loss: 15.7924
    202 
    203 Epoch [12/80], Iter [300/500] Loss: 13.7092
    204 
    205 Epoch [12/80], Iter [400/500] Loss: 12.0196
    206 
    207 Epoch [12/80], Iter [500/500] Loss: 7.2408
    208 
    209 Epoch [12/80], Iter [600/500] Loss: 10.7912
    210 
    211 Epoch [12/80], Iter [700/500] Loss: 11.9665
    212 
    213 Epoch [12/80], Iter [800/500] Loss: 13.7599
    214 
    215 Epoch [12/80], Iter [900/500] Loss: 18.3869
    216 
    217 Epoch [13/80], Iter [100/500] Loss: 11.1715
    218 
    219 Epoch [13/80], Iter [200/500] Loss: 17.6397
    220 
    221 Epoch [13/80], Iter [300/500] Loss: 9.3256
    222 
    223 Epoch [13/80], Iter [400/500] Loss: 12.7995
    224 
    225 Epoch [13/80], Iter [500/500] Loss: 7.8598
    226 
    227 Epoch [13/80], Iter [600/500] Loss: 10.7001
    228 
    229 Epoch [13/80], Iter [700/500] Loss: 26.3672
    230 
    231 Epoch [13/80], Iter [800/500] Loss: 15.4815
    232 
    233 Epoch [13/80], Iter [900/500] Loss: 14.0478
    234 
    235 Epoch [14/80], Iter [100/500] Loss: 16.0473
    236 
    237 Epoch [14/80], Iter [200/500] Loss: 4.7192
    238 
    239 Epoch [14/80], Iter [300/500] Loss: 10.7586
    240 
    241 Epoch [14/80], Iter [400/500] Loss: 13.6734
    242 
    243 Epoch [14/80], Iter [500/500] Loss: 9.3228
    244 
    245 Epoch [14/80], Iter [600/500] Loss: 5.5830
    246 
    247 Epoch [14/80], Iter [700/500] Loss: 7.5252
    248 
    249 Epoch [14/80], Iter [800/500] Loss: 7.6239
    250 
    251 Epoch [14/80], Iter [900/500] Loss: 7.1024
    252 
    253 Epoch [15/80], Iter [100/500] Loss: 17.5188
    254 
    255 Epoch [15/80], Iter [200/500] Loss: 11.8842
    256 
    257 Epoch [15/80], Iter [300/500] Loss: 9.0330
    258 
    259 Epoch [15/80], Iter [400/500] Loss: 11.7120
    260 
    261 Epoch [15/80], Iter [500/500] Loss: 17.0862
    262 
    263 Epoch [15/80], Iter [600/500] Loss: 11.4103
    264 
    265 Epoch [15/80], Iter [700/500] Loss: 12.2746
    266 
    267 Epoch [15/80], Iter [800/500] Loss: 13.6224
    268 
    269 Epoch [15/80], Iter [900/500] Loss: 12.7686
    270 
    271 Epoch [16/80], Iter [100/500] Loss: 5.5978
    272 
    273 Epoch [16/80], Iter [200/500] Loss: 12.2122
    274 
    275 Epoch [16/80], Iter [300/500] Loss: 5.1189
    276 
    277 Epoch [16/80], Iter [400/500] Loss: 14.1793
    278 
    279 Epoch [16/80], Iter [500/500] Loss: 10.3744
    280 
    281 Epoch [16/80], Iter [600/500] Loss: 5.2099
    282 
    283 Epoch [16/80], Iter [700/500] Loss: 6.7522
    284 
    285 Epoch [16/80], Iter [800/500] Loss: 13.2532
    286 
    287 Epoch [16/80], Iter [900/500] Loss: 6.7040
    288 
    289 Epoch [17/80], Iter [100/500] Loss: 10.7390
    290 
    291 Epoch [17/80], Iter [200/500] Loss: 8.1525
    292 
    293 Epoch [17/80], Iter [300/500] Loss: 14.2229
    294 
    295 Epoch [17/80], Iter [400/500] Loss: 7.6302
    296 
    297 Epoch [17/80], Iter [500/500] Loss: 6.4554
    298 
    299 Epoch [17/80], Iter [600/500] Loss: 8.2380
    300 
    301 Epoch [17/80], Iter [700/500] Loss: 6.4445
    302 
    303 Epoch [17/80], Iter [800/500] Loss: 8.4644
    304 
    305 Epoch [17/80], Iter [900/500] Loss: 9.0200
    306 
    307 Epoch [18/80], Iter [100/500] Loss: 9.5088
    308 
    309 Epoch [18/80], Iter [200/500] Loss: 3.8648
    310 
    311 Epoch [18/80], Iter [300/500] Loss: 8.8408
    312 
    313 Epoch [18/80], Iter [400/500] Loss: 7.4195
    314 
    315 Epoch [18/80], Iter [500/500] Loss: 15.0480
    316 
    317 Epoch [18/80], Iter [600/500] Loss: 5.6232
    318 
    319 Epoch [18/80], Iter [700/500] Loss: 5.2233
    320 
    321 Epoch [18/80], Iter [800/500] Loss: 6.5702
    322 
    323 Epoch [18/80], Iter [900/500] Loss: 13.7427
    324 
    325 Epoch [19/80], Iter [100/500] Loss: 3.5658
    326 
    327 Epoch [19/80], Iter [200/500] Loss: 4.7062
    328 
    329 Epoch [19/80], Iter [300/500] Loss: 10.7831
    330 
    331 Epoch [19/80], Iter [400/500] Loss: 13.1375
    332 
    333 Epoch [19/80], Iter [500/500] Loss: 22.2764
    334 
    335 Epoch [19/80], Iter [600/500] Loss: 10.3463
    336 
    337 Epoch [19/80], Iter [700/500] Loss: 7.2373
    338 
    339 Epoch [19/80], Iter [800/500] Loss: 5.5266
    340 
    341 Epoch [19/80], Iter [900/500] Loss: 9.2434
    342 
    343 Epoch [20/80], Iter [100/500] Loss: 7.8164
    344 
    345 Epoch [20/80], Iter [200/500] Loss: 9.6628
    346 
    347 Epoch [20/80], Iter [300/500] Loss: 4.1032
    348 
    349 Epoch [20/80], Iter [400/500] Loss: 16.5922
    350 
    351 Epoch [20/80], Iter [500/500] Loss: 6.9907
    352 
    353 Epoch [20/80], Iter [600/500] Loss: 10.9906
    354 
    355 Epoch [20/80], Iter [700/500] Loss: 8.5092
    356 
    357 Epoch [20/80], Iter [800/500] Loss: 7.1332
    358 
    359 Epoch [20/80], Iter [900/500] Loss: 6.1639
    360 
    361 Epoch [21/80], Iter [100/500] Loss: 6.3100
    362 
    363 Epoch [21/80], Iter [200/500] Loss: 4.5190
    364 
    365 Epoch [21/80], Iter [300/500] Loss: 4.3493
    366 
    367 Epoch [21/80], Iter [400/500] Loss: 7.9860
    368 
    369 Epoch [21/80], Iter [500/500] Loss: 8.8312
    370 
    371 Epoch [21/80], Iter [600/500] Loss: 10.7502
    372 
    373 Epoch [21/80], Iter [700/500] Loss: 3.2116
    374 
    375 Epoch [21/80], Iter [800/500] Loss: 4.0126
    376 
    377 Epoch [21/80], Iter [900/500] Loss: 5.3675
    378 
    379 Epoch [22/80], Iter [100/500] Loss: 1.4893
    380 
    381 Epoch [22/80], Iter [200/500] Loss: 1.6984
    382 
    383 Epoch [22/80], Iter [300/500] Loss: 2.6195
    384 
    385 Epoch [22/80], Iter [400/500] Loss: 2.1465
    386 
    387 Epoch [22/80], Iter [500/500] Loss: 2.9847
    388 
    389 Epoch [22/80], Iter [600/500] Loss: 4.9699
    390 
    391 Epoch [22/80], Iter [700/500] Loss: 1.6728
    392 
    393 Epoch [22/80], Iter [800/500] Loss: 1.3381
    394 
    395 Epoch [22/80], Iter [900/500] Loss: 2.0680
    396 
    397 Epoch [23/80], Iter [100/500] Loss: 1.9145
    398 
    399 Epoch [23/80], Iter [200/500] Loss: 0.9280
    400 
    401 Epoch [23/80], Iter [300/500] Loss: 2.9585
    402 
    403 Epoch [23/80], Iter [400/500] Loss: 1.0787
    404 
    405 Epoch [23/80], Iter [500/500] Loss: 3.1779
    406 
    407 Epoch [23/80], Iter [600/500] Loss: 2.4411
    408 
    409 Epoch [23/80], Iter [700/500] Loss: 2.0049
    410 
    411 Epoch [23/80], Iter [800/500] Loss: 2.2844
    412 
    413 Epoch [23/80], Iter [900/500] Loss: 2.2328
    414 
    415 Epoch [24/80], Iter [100/500] Loss: 1.5221
    416 
    417 Epoch [24/80], Iter [200/500] Loss: 2.0100
    418 
    419 Epoch [24/80], Iter [300/500] Loss: 1.8868
    420 
    421 Epoch [24/80], Iter [400/500] Loss: 1.4898
    422 
    423 Epoch [24/80], Iter [500/500] Loss: 1.1626
    424 
    425 Epoch [24/80], Iter [600/500] Loss: 1.2527
    426 
    427 Epoch [24/80], Iter [700/500] Loss: 1.3430
    428 
    429 Epoch [24/80], Iter [800/500] Loss: 1.3355
    430 
    431 Epoch [24/80], Iter [900/500] Loss: 1.8292
    432 
    433 Epoch [25/80], Iter [100/500] Loss: 2.2471
    434 
    435 Epoch [25/80], Iter [200/500] Loss: 2.8727
    436 
    437 Epoch [25/80], Iter [300/500] Loss: 1.3531
    438 
    439 Epoch [25/80], Iter [400/500] Loss: 1.1110
    440 
    441 Epoch [25/80], Iter [500/500] Loss: 2.7648
    442 
    443 Epoch [25/80], Iter [600/500] Loss: 1.8364
    444 
    445 Epoch [25/80], Iter [700/500] Loss: 1.4299
    446 
    447 Epoch [25/80], Iter [800/500] Loss: 1.5985
    448 
    449 Epoch [25/80], Iter [900/500] Loss: 2.5364
    450 
    451 Epoch [26/80], Iter [100/500] Loss: 2.6469
    452 
    453 Epoch [26/80], Iter [200/500] Loss: 3.1215
    454 
    455 Epoch [26/80], Iter [300/500] Loss: 1.4029
    456 
    457 Epoch [26/80], Iter [400/500] Loss: 1.2688
    458 
    459 Epoch [26/80], Iter [500/500] Loss: 2.4794
    460 
    461 Epoch [26/80], Iter [600/500] Loss: 1.1937
    462 
    463 Epoch [26/80], Iter [700/500] Loss: 1.0709
    464 
    465 Epoch [26/80], Iter [800/500] Loss: 1.4961
    466 
    467 Epoch [26/80], Iter [900/500] Loss: 1.4560
    468 
    469 Epoch [27/80], Iter [100/500] Loss: 2.0633
    470 
    471 Epoch [27/80], Iter [200/500] Loss: 2.6687
    472 
    473 Epoch [27/80], Iter [300/500] Loss: 5.2073
    474 
    475 Epoch [27/80], Iter [400/500] Loss: 2.2762
    476 
    477 Epoch [27/80], Iter [500/500] Loss: 1.6105
    478 
    479 Epoch [27/80], Iter [600/500] Loss: 1.6631
    480 
    481 Epoch [27/80], Iter [700/500] Loss: 1.0523
    482 
    483 Epoch [27/80], Iter [800/500] Loss: 2.8945
    484 
    485 Epoch [27/80], Iter [900/500] Loss: 1.5388
    486 
    487 Epoch [28/80], Iter [100/500] Loss: 1.6230
    488 
    489 Epoch [28/80], Iter [200/500] Loss: 1.8003
    490 
    491 Epoch [28/80], Iter [300/500] Loss: 1.4840
    492 
    493 Epoch [28/80], Iter [400/500] Loss: 0.9465
    494 
    495 Epoch [28/80], Iter [500/500] Loss: 1.6054
    496 
    497 Epoch [28/80], Iter [600/500] Loss: 3.3669
    498 
    499 Epoch [28/80], Iter [700/500] Loss: 1.4555
    500 
    501 Epoch [28/80], Iter [800/500] Loss: 2.2903
    502 
    503 Epoch [28/80], Iter [900/500] Loss: 1.2850
    504 
    505 Epoch [29/80], Iter [100/500] Loss: 1.7152
    506 
    507 Epoch [29/80], Iter [200/500] Loss: 1.2824
    508 
    509 Epoch [29/80], Iter [300/500] Loss: 1.5778
    510 
    511 Epoch [29/80], Iter [400/500] Loss: 3.1152
    512 
    513 Epoch [29/80], Iter [500/500] Loss: 1.2492
    514 
    515 Epoch [29/80], Iter [600/500] Loss: 0.9721
    516 
    517 Epoch [29/80], Iter [700/500] Loss: 1.4465
    518 
    519 Epoch [29/80], Iter [800/500] Loss: 0.9678
    520 
    521 Epoch [29/80], Iter [900/500] Loss: 1.5000
    522 
    523 Epoch [30/80], Iter [100/500] Loss: 1.5524
    524 
    525 Epoch [30/80], Iter [200/500] Loss: 1.5233
    526 
    527 Epoch [30/80], Iter [300/500] Loss: 1.4226
    528 
    529 Epoch [30/80], Iter [400/500] Loss: 0.9432
    530 
    531 Epoch [30/80], Iter [500/500] Loss: 1.4623
    532 
    533 Epoch [30/80], Iter [600/500] Loss: 1.3845
    534 
    535 Epoch [30/80], Iter [700/500] Loss: 1.3301
    536 
    537 Epoch [30/80], Iter [800/500] Loss: 1.0105
    538 
    539 Epoch [30/80], Iter [900/500] Loss: 1.8372
    540 
    541 Epoch [31/80], Iter [100/500] Loss: 1.3019
    542 
    543 Epoch [31/80], Iter [200/500] Loss: 1.1216
    544 
    545 Epoch [31/80], Iter [300/500] Loss: 0.8553
    546 
    547 Epoch [31/80], Iter [400/500] Loss: 1.6882
    548 
    549 Epoch [31/80], Iter [500/500] Loss: 1.7691
    550 
    551 Epoch [31/80], Iter [600/500] Loss: 1.7412
    552 
    553 Epoch [31/80], Iter [700/500] Loss: 2.2204
    554 
    555 Epoch [31/80], Iter [800/500] Loss: 0.6559
    556 
    557 Epoch [31/80], Iter [900/500] Loss: 1.4613
    558 
    559 Epoch [32/80], Iter [100/500] Loss: 1.1408
    560 
    561 Epoch [32/80], Iter [200/500] Loss: 3.6378
    562 
    563 Epoch [32/80], Iter [300/500] Loss: 1.5543
    564 
    565 Epoch [32/80], Iter [400/500] Loss: 2.1538
    566 
    567 Epoch [32/80], Iter [500/500] Loss: 1.1102
    568 
    569 Epoch [32/80], Iter [600/500] Loss: 1.3187
    570 
    571 Epoch [32/80], Iter [700/500] Loss: 0.7230
    572 
    573 Epoch [32/80], Iter [800/500] Loss: 1.6149
    574 
    575 Epoch [32/80], Iter [900/500] Loss: 1.0926
    576 
    577 Epoch [33/80], Iter [100/500] Loss: 1.9460
    578 
    579 Epoch [33/80], Iter [200/500] Loss: 0.9948
    580 
    581 Epoch [33/80], Iter [300/500] Loss: 1.4460
    582 
    583 Epoch [33/80], Iter [400/500] Loss: 1.5855
    584 
    585 Epoch [33/80], Iter [500/500] Loss: 1.5834
    586 
    587 Epoch [33/80], Iter [600/500] Loss: 0.8896
    588 
    589 Epoch [33/80], Iter [700/500] Loss: 1.1927
    590 
    591 Epoch [33/80], Iter [800/500] Loss: 1.5707
    592 
    593 Epoch [33/80], Iter [900/500] Loss: 0.7817
    594 
    595 Epoch [34/80], Iter [100/500] Loss: 0.9155
    596 
    597 Epoch [34/80], Iter [200/500] Loss: 0.7930
    598 
    599 Epoch [34/80], Iter [300/500] Loss: 1.2760
    600 
    601 Epoch [34/80], Iter [400/500] Loss: 0.7170
    602 
    603 Epoch [34/80], Iter [500/500] Loss: 1.9962
    604 
    605 Epoch [34/80], Iter [600/500] Loss: 1.2418
    606 
    607 Epoch [34/80], Iter [700/500] Loss: 1.4847
    608 
    609 Epoch [34/80], Iter [800/500] Loss: 0.8495
    610 
    611 Epoch [34/80], Iter [900/500] Loss: 1.3709
    612 
    613 Epoch [35/80], Iter [100/500] Loss: 1.8495
    614 
    615 Epoch [35/80], Iter [200/500] Loss: 0.9494
    616 
    617 Epoch [35/80], Iter [300/500] Loss: 0.6224
    618 
    619 Epoch [35/80], Iter [400/500] Loss: 0.5101
    620 
    621 Epoch [35/80], Iter [500/500] Loss: 0.9373
    622 
    623 Epoch [35/80], Iter [600/500] Loss: 1.5811
    624 
    625 Epoch [35/80], Iter [700/500] Loss: 1.5295
    626 
    627 Epoch [35/80], Iter [800/500] Loss: 0.7787
    628 
    629 Epoch [35/80], Iter [900/500] Loss: 1.0337
    630 
    631 Epoch [36/80], Iter [100/500] Loss: 0.6236
    632 
    633 Epoch [36/80], Iter [200/500] Loss: 1.8516
    634 
    635 Epoch [36/80], Iter [300/500] Loss: 1.5021
    636 
    637 Epoch [36/80], Iter [400/500] Loss: 1.0459
    638 
    639 Epoch [36/80], Iter [500/500] Loss: 1.4737
    640 
    641 Epoch [36/80], Iter [600/500] Loss: 0.7842
    642 
    643 Epoch [36/80], Iter [700/500] Loss: 1.6798
    644 
    645 Epoch [36/80], Iter [800/500] Loss: 1.7413
    646 
    647 Epoch [36/80], Iter [900/500] Loss: 0.6222
    648 
    649 Epoch [37/80], Iter [100/500] Loss: 0.5713
    650 
    651 Epoch [37/80], Iter [200/500] Loss: 1.3030
    652 
    653 Epoch [37/80], Iter [300/500] Loss: 1.6937
    654 
    655 Epoch [37/80], Iter [400/500] Loss: 0.8656
    656 
    657 Epoch [37/80], Iter [500/500] Loss: 1.3340
    658 
    659 Epoch [37/80], Iter [600/500] Loss: 0.6310
    660 
    661 Epoch [37/80], Iter [700/500] Loss: 1.1445
    662 
    663 Epoch [37/80], Iter [800/500] Loss: 0.6099
    664 
    665 Epoch [37/80], Iter [900/500] Loss: 1.3679
    666 
    667 Epoch [38/80], Iter [100/500] Loss: 0.9127
    668 
    669 Epoch [38/80], Iter [200/500] Loss: 1.9450
    670 
    671 Epoch [38/80], Iter [300/500] Loss: 1.2240
    672 
    673 Epoch [38/80], Iter [400/500] Loss: 1.4049
    674 
    675 Epoch [38/80], Iter [500/500] Loss: 0.9247
    676 
    677 Epoch [38/80], Iter [600/500] Loss: 1.5308
    678 
    679 Epoch [38/80], Iter [700/500] Loss: 1.9777
    680 
    681 Epoch [38/80], Iter [800/500] Loss: 1.2109
    682 
    683 Epoch [38/80], Iter [900/500] Loss: 0.8337
    684 
    685 Epoch [39/80], Iter [100/500] Loss: 0.7904
    686 
    687 Epoch [39/80], Iter [200/500] Loss: 0.8451
    688 
    689 Epoch [39/80], Iter [300/500] Loss: 1.6993
    690 
    691 Epoch [39/80], Iter [400/500] Loss: 1.2196
    692 
    693 Epoch [39/80], Iter [500/500] Loss: 1.0665
    694 
    695 Epoch [39/80], Iter [600/500] Loss: 0.7412
    696 
    697 Epoch [39/80], Iter [700/500] Loss: 0.6486
    698 
    699 Epoch [39/80], Iter [800/500] Loss: 1.5608
    700 
    701 Epoch [39/80], Iter [900/500] Loss: 1.9978
    702 
    703 Epoch [40/80], Iter [100/500] Loss: 1.7101
    704 
    705 Epoch [40/80], Iter [200/500] Loss: 1.4484
    706 
    707 Epoch [40/80], Iter [300/500] Loss: 1.5894
    708 
    709 Epoch [40/80], Iter [400/500] Loss: 1.3371
    710 
    711 Epoch [40/80], Iter [500/500] Loss: 0.9766
    712 
    713 Epoch [40/80], Iter [600/500] Loss: 1.9935
    714 
    715 Epoch [40/80], Iter [700/500] Loss: 2.0719
    716 
    717 Epoch [40/80], Iter [800/500] Loss: 0.9455
    718 
    719 Epoch [40/80], Iter [900/500] Loss: 0.8072
    720 
    721 Epoch [41/80], Iter [100/500] Loss: 1.3899
    722 
    723 Epoch [41/80], Iter [200/500] Loss: 0.9863
    724 
    725 Epoch [41/80], Iter [300/500] Loss: 1.3738
    726 
    727 Epoch [41/80], Iter [400/500] Loss: 0.6883
    728 
    729 Epoch [41/80], Iter [500/500] Loss: 0.8442
    730 
    731 Epoch [41/80], Iter [600/500] Loss: 2.0286
    732 
    733 Epoch [41/80], Iter [700/500] Loss: 1.1960
    734 
    735 Epoch [41/80], Iter [800/500] Loss: 1.2499
    736 
    737 Epoch [41/80], Iter [900/500] Loss: 0.6043
    738 
    739 Epoch [42/80], Iter [100/500] Loss: 0.3437
    740 
    741 Epoch [42/80], Iter [200/500] Loss: 0.6596
    742 
    743 Epoch [42/80], Iter [300/500] Loss: 0.4450
    744 
    745 Epoch [42/80], Iter [400/500] Loss: 0.7189
    746 
    747 Epoch [42/80], Iter [500/500] Loss: 0.5022
    748 
    749 Epoch [42/80], Iter [600/500] Loss: 0.4597
    750 
    751 Epoch [42/80], Iter [700/500] Loss: 0.7743
    752 
    753 Epoch [42/80], Iter [800/500] Loss: 0.3344
    754 
    755 Epoch [42/80], Iter [900/500] Loss: 0.7295
    756 
    757 Epoch [43/80], Iter [100/500] Loss: 0.5074
    758 
    759 Epoch [43/80], Iter [200/500] Loss: 0.3128
    760 
    761 Epoch [43/80], Iter [300/500] Loss: 0.2800
    762 
    763 Epoch [43/80], Iter [400/500] Loss: 0.3059
    764 
    765 Epoch [43/80], Iter [500/500] Loss: 0.3486
    766 
    767 Epoch [43/80], Iter [600/500] Loss: 0.7222
    768 
    769 Epoch [43/80], Iter [700/500] Loss: 0.7349
    770 
    771 Epoch [43/80], Iter [800/500] Loss: 0.8455
    772 
    773 Epoch [43/80], Iter [900/500] Loss: 0.7261
    774 
    775 Epoch [44/80], Iter [100/500] Loss: 0.5404
    776 
    777 Epoch [44/80], Iter [200/500] Loss: 0.5428
    778 
    779 Epoch [44/80], Iter [300/500] Loss: 0.5385
    780 
    781 Epoch [44/80], Iter [400/500] Loss: 0.4106
    782 
    783 Epoch [44/80], Iter [500/500] Loss: 0.5296
    784 
    785 Epoch [44/80], Iter [600/500] Loss: 0.6045
    786 
    787 Epoch [44/80], Iter [700/500] Loss: 0.3837
    788 
    789 Epoch [44/80], Iter [800/500] Loss: 0.7552
    790 
    791 Epoch [44/80], Iter [900/500] Loss: 0.4996
    792 
    793 Epoch [45/80], Iter [100/500] Loss: 0.3381
    794 
    795 Epoch [45/80], Iter [200/500] Loss: 0.3910
    796 
    797 Epoch [45/80], Iter [300/500] Loss: 0.3790
    798 
    799 Epoch [45/80], Iter [400/500] Loss: 0.2718
    800 
    801 Epoch [45/80], Iter [500/500] Loss: 0.3572
    802 
    803 Epoch [45/80], Iter [600/500] Loss: 0.2913
    804 
    805 Epoch [45/80], Iter [700/500] Loss: 0.5244
    806 
    807 Epoch [45/80], Iter [800/500] Loss: 0.3647
    808 
    809 Epoch [45/80], Iter [900/500] Loss: 0.3161
    810 
    811 Epoch [46/80], Iter [100/500] Loss: 0.4728
    812 
    813 Epoch [46/80], Iter [200/500] Loss: 0.4386
    814 
    815 Epoch [46/80], Iter [300/500] Loss: 0.2861
    816 
    817 Epoch [46/80], Iter [400/500] Loss: 0.2460
    818 
    819 Epoch [46/80], Iter [500/500] Loss: 0.3490
    820 
    821 Epoch [46/80], Iter [600/500] Loss: 0.5804
    822 
    823 Epoch [46/80], Iter [700/500] Loss: 0.4951
    824 
    825 Epoch [46/80], Iter [800/500] Loss: 0.4600
    826 
    827 Epoch [46/80], Iter [900/500] Loss: 0.5658
    828 
    829 Epoch [47/80], Iter [100/500] Loss: 0.2479
    830 
    831 Epoch [47/80], Iter [200/500] Loss: 0.2688
    832 
    833 Epoch [47/80], Iter [300/500] Loss: 0.3082
    834 
    835 Epoch [47/80], Iter [400/500] Loss: 0.3929
    836 
    837 Epoch [47/80], Iter [500/500] Loss: 0.3126
    838 
    839 Epoch [47/80], Iter [600/500] Loss: 0.5041
    840 
    841 Epoch [47/80], Iter [700/500] Loss: 0.5848
    842 
    843 Epoch [47/80], Iter [800/500] Loss: 0.4968
    844 
    845 Epoch [47/80], Iter [900/500] Loss: 0.3496
    846 
    847 Epoch [48/80], Iter [100/500] Loss: 0.2753
    848 
    849 Epoch [48/80], Iter [200/500] Loss: 0.3885
    850 
    851 Epoch [48/80], Iter [300/500] Loss: 0.3743
    852 
    853 Epoch [48/80], Iter [400/500] Loss: 0.2425
    854 
    855 Epoch [48/80], Iter [500/500] Loss: 0.2472
    856 
    857 Epoch [48/80], Iter [600/500] Loss: 0.3003
    858 
    859 Epoch [48/80], Iter [700/500] Loss: 0.4936
    860 
    861 Epoch [48/80], Iter [800/500] Loss: 0.3169
    862 
    863 Epoch [48/80], Iter [900/500] Loss: 0.2543
    864 
    865 Epoch [49/80], Iter [100/500] Loss: 0.4262
    866 
    867 Epoch [49/80], Iter [200/500] Loss: 0.3396
    868 
    869 Epoch [49/80], Iter [300/500] Loss: 0.4670
    870 
    871 Epoch [49/80], Iter [400/500] Loss: 0.2543
    872 
    873 Epoch [49/80], Iter [500/500] Loss: 0.3146
    874 
    875 Epoch [49/80], Iter [600/500] Loss: 1.3187
    876 
    877 Epoch [49/80], Iter [700/500] Loss: 0.2993
    878 
    879 Epoch [49/80], Iter [800/500] Loss: 0.3053
    880 
    881 Epoch [49/80], Iter [900/500] Loss: 0.3343
    882 
    883 Epoch [50/80], Iter [100/500] Loss: 0.2081
    884 
    885 Epoch [50/80], Iter [200/500] Loss: 0.5631
    886 
    887 Epoch [50/80], Iter [300/500] Loss: 0.4358
    888 
    889 Epoch [50/80], Iter [400/500] Loss: 0.4028
    890 
    891 Epoch [50/80], Iter [500/500] Loss: 0.2510
    892 
    893 Epoch [50/80], Iter [600/500] Loss: 0.5876
    894 
    895 Epoch [50/80], Iter [700/500] Loss: 0.3692
    896 
    897 Epoch [50/80], Iter [800/500] Loss: 0.4500
    898 
    899 Epoch [50/80], Iter [900/500] Loss: 0.1850
    900 
    901 ('time used:', 30318.149681000003)
    View Code


     

  • 相关阅读:
    Ubuntu 16.04 compare 软件安装
    ubuntu 18 常用软件安装
    LSTM时间序列预测学习
    ubuntu 16.04 屏幕截图
    ubuntu 16.04 tensorboard 学习
    ubuntu 16 .04常见指令整理
    ABAP 更改销售订单(BAPI'BAPI_SALESORDER_CHANGE')
    ABAP SM30表维护生成器,新加一列描述仅供用户维护时参考,不存内表。(例如物料描述,客户描述)
    93年到底多少岁
    一个93年的中年人对2019年的总结
  • 原文地址:https://www.cnblogs.com/yongjieShi/p/7261944.html
Copyright © 2020-2023  润新知