• 扩展group by语句


    学习自《剑破冰山 Oracle开发艺术》第五章 报表开发之扩展GROUP BY


    对于简单group by语句很难对复杂维度进行分析,难以达到实际生产的复杂报表需求,group by的扩展特性就需要了,union语句也可以达到需求但是sql复杂且效率低

    1 rollup多维汇总

    rollup,分组先进行常规分组,然后在此基础上,通过将列从右向左移动,然后进行更高一级的小计,最后合计,注意rollup分组和列的顺序相关

    指定n列,有n+1种分组方式

    部分rollup可以剔除某些不需要的小计和合计

    例子

    [oracle@localhost ~]$ sqlplus scott/tiger;
    
    SQL*Plus: Release 11.2.0.4.0 Production on Mon Mar 23 10:31:24 2020
    
    Copyright (c) 1982, 2013, Oracle.  All rights reserved.
    
    
    Connected to:
    Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production
    With the Partitioning, OLAP, Data Mining and Real Application Testing options
    
    10:31:24 SCOTT@edw> set autotrace on
    10:31:30 SCOTT@edw> SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY ROLLUP(a.dname,b.job);
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    SALES                          9400
    RESEARCH       CLERK           1900
    RESEARCH       ANALYST         6000
    RESEARCH       MANAGER         2975
    RESEARCH                      10875
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    ACCOUNTING                     8750
                                  29025
    
    13 rows selected.
    
    Elapsed: 00:00:00.01
    
    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 3067950682
    
    -----------------------------------------------------------------------------------------
    | Id  | Operation                     | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    -----------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT              |         |    14 |   392 |     7  (29)| 00:00:01 |
    |   1 |  SORT GROUP BY ROLLUP         |         |    14 |   392 |     7  (29)| 00:00:01 |
    |   2 |   MERGE JOIN                  |         |    14 |   392 |     6  (17)| 00:00:01 |
    |   3 |    TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    52 |     2   (0)| 00:00:01 |
    |   4 |     INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00:00:01 |
    |*  5 |    SORT JOIN                  |         |    14 |   210 |     4  (25)| 00:00:01 |
    |   6 |     TABLE ACCESS FULL         | EMP     |    14 |   210 |     3   (0)| 00:00:01 |
    -----------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       5 - access("A"."DEPTNO"="B"."DEPTNO")
           filter("A"."DEPTNO"="B"."DEPTNO")
    
    
    Statistics
    ----------------------------------------------------------
              0  recursive calls
              0  db block gets
              8  consistent gets
              0  physical reads
              0  redo size
            913  bytes sent via SQL*Net to client
            524  bytes received via SQL*Net from client
              2  SQL*Net roundtrips to/from client
              2  sorts (memory)
              0  sorts (disk)
             13  rows processed
    
    10:31:34 SCOTT@edw> 
    

    可以看出仅仅dept和emp表均仅扫描一次,而如果是union来写就会多次重复扫描,效率低

    通过执行计划看到有个隐藏操作SORT GROUP BY ROLLUP ,显示结果有序,一般还是要显示排序的,默认的排序不一定符合业务需求

    rollup分组具有方向性

    如果使用hint:expand_gset_to_union,则优化器会将rollup转换为对应的union all操作,其他的grouping sets、cube也可以


    部分rollup分组,将不需要小计的列从rollup拿出到group by中即可,当然合计也没有了

    例子

    10:31:34 SCOTT@edw> set autotrace off
    10:43:49 SCOTT@edw> SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY to_char(b.hiredate,'yyyy'),a.dname,ROLLUP(b.job);
    
    HIRE DNAME          JOB          SUM_SAL
    ---- -------------- --------- ----------
    1980 RESEARCH       CLERK            800
    1980 RESEARCH                        800
    1981 SALES          CLERK            950
    1981 SALES          MANAGER         2850
    1981 SALES          SALESMAN        5600
    1981 SALES                          9400
    1981 RESEARCH       ANALYST         3000
    1981 RESEARCH       MANAGER         2975
    1981 RESEARCH                       5975
    1981 ACCOUNTING     MANAGER         2450
    1981 ACCOUNTING     PRESIDENT       5000
    1981 ACCOUNTING                     7450
    1982 ACCOUNTING     CLERK           1300
    1982 ACCOUNTING                     1300
    1987 RESEARCH       CLERK           1100
    1987 RESEARCH       ANALYST         3000
    1987 RESEARCH                       4100
    
    17 rows selected.
    
    Elapsed: 00:00:00.01
    10:43:53 SCOTT@edw> 
    

    2 cube交叉报表

    cube分组可以实现更精细复杂的统计,对不同维度的所以可能进行分析,生成交叉报表,cube分组,是从n列中先进行合计,即一个列不取,然后小计,即取1列到n-1列,最后n列全取,即标准分组

    因为包含所有可能的组合,所以结果与列的顺序无关,列顺序仅仅影响默认的隐藏排序而已,如果用了显示排序则无所谓了

    cube分组增加一列,可能结果是指数级的增长,分组种类2的n次方

    语法类似,例子

    11:02:40 SCOTT@edw> set autotrace on
    11:02:48 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY CUBE(a.dname,b.job);
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
                                  29025
                   CLERK           4150
                   ANALYST         6000
                   MANAGER         8275
                   SALESMAN        5600
                   PRESIDENT       5000
    SALES                          9400
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    RESEARCH                      10875
    RESEARCH       CLERK           1900
    RESEARCH       ANALYST         6000
    RESEARCH       MANAGER         2975
    ACCOUNTING                     8750
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    
    18 rows selected.
    
    Elapsed: 00:00:00.01
    
    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 2382666110
    
    -------------------------------------------------------------------------------------------
    | Id  | Operation                       | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    -------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT                |         |    14 |   392 |     7  (29)| 00:00:01 |
    |   1 |  SORT GROUP BY                  |         |    14 |   392 |     7  (29)| 00:00:01 |
    |   2 |   GENERATE CUBE                 |         |    14 |   392 |     7  (29)| 00:00:01 |
    |   3 |    SORT GROUP BY                |         |    14 |   392 |     7  (29)| 00:00:01 |
    |   4 |     MERGE JOIN                  |         |    14 |   392 |     6  (17)| 00:00:01 |
    |   5 |      TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    52 |     2   (0)| 00:00:01 |
    |   6 |       INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00:00:01 |
    |*  7 |      SORT JOIN                  |         |    14 |   210 |     4  (25)| 00:00:01 |
    |   8 |       TABLE ACCESS FULL         | EMP     |    14 |   210 |     3   (0)| 00:00:01 |
    -------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       7 - access("A"."DEPTNO"="B"."DEPTNO")
           filter("A"."DEPTNO"="B"."DEPTNO")
    
    
    Statistics
    ----------------------------------------------------------
              1  recursive calls
              0  db block gets
              8  consistent gets
              0  physical reads
              0  redo size
           1175  bytes sent via SQL*Net to client
            535  bytes received via SQL*Net from client
              3  SQL*Net roundtrips to/from client
              3  sorts (memory)
              0  sorts (disk)
             18  rows processed
    
    11:02:52 SCOTT@edw> 
    

    可以看执行计划,结果也是有序的


    部分cube分组,例子

    11:06:24 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY a.dname,CUBE(b.job);
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
    SALES                          9400
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    RESEARCH                      10875
    RESEARCH       CLERK           1900
    RESEARCH       ANALYST         6000
    RESEARCH       MANAGER         2975
    ACCOUNTING                     8750
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    
    12 rows selected.
    
    Elapsed: 00:00:00.00
    11:06:26 SCOTT@edw>
    

    3 grouping sets实现小计

    rollup和cube会产生各种标准分组、小计、合计,grouping  sets则只关注指定维度的小计,n列的结果也是n种

    如grouping sets(a,b,c)就是group by a、group by b和group by c的结果union all

    例子

    11:06:26 SCOTT@edw>  set autotrace on
    11:12:33 SCOTT@edw> SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY GROUPING SETS( to_char(b.hiredate,'yyyy'),a.dname,b.job);
    
    HIRE DNAME          JOB          SUM_SAL
    ---- -------------- --------- ----------
                        CLERK           4150
                        SALESMAN        5600
                        PRESIDENT       5000
                        MANAGER         8275
                        ANALYST         6000
         ACCOUNTING                     8750
         RESEARCH                      10875
         SALES                          9400
    1987                                4100
    1980                                 800
    1982                                1300
    1981                               22825
    
    12 rows selected.
    
    Elapsed: 00:00:00.01
    
    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 2825031421
    
    ------------------------------------------------------------------------------------------------------------
    | Id  | Operation                      | Name                      | Rows  | Bytes | Cost (%CPU)| Time     |
    ------------------------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT               |                           |    14 |   448 |    17  (24)| 00:00:01 |
    |   1 |  TEMP TABLE TRANSFORMATION     |                           |       |       |            |          |
    |   2 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660D_29B9BB |       |       |            |          |
    |   3 |    MERGE JOIN                  |                           |    14 |   504 |     6  (17)| 00:00:01 |
    |   4 |     TABLE ACCESS BY INDEX ROWID| DEPT                      |     4 |    52 |     2   (0)| 00:00:01 |
    |   5 |      INDEX FULL SCAN           | PK_DEPT                   |     4 |       |     1   (0)| 00:00:01 |
    |*  6 |     SORT JOIN                  |                           |    14 |   322 |     4  (25)| 00:00:01 |
    |   7 |      TABLE ACCESS FULL         | EMP                       |    14 |   322 |     3   (0)| 00:00:01 |
    |   8 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660E_29B9BB |       |       |            |          |
    |   9 |    HASH GROUP BY               |                           |     5 |    60 |     3  (34)| 00:00:01 |
    |  10 |     TABLE ACCESS FULL          | SYS_TEMP_0FD9D660D_29B9BB |    14 |   168 |     2   (0)| 00:00:01 |
    |  11 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660E_29B9BB |       |       |            |          |
    |  12 |    HASH GROUP BY               |                           |     4 |    56 |     3  (34)| 00:00:01 |
    |  13 |     TABLE ACCESS FULL          | SYS_TEMP_0FD9D660D_29B9BB |    14 |   196 |     2   (0)| 00:00:01 |
    |  14 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660E_29B9BB |       |       |            |          |
    |  15 |    HASH GROUP BY               |                           |     1 |     8 |     3  (34)| 00:00:01 |
    |  16 |     TABLE ACCESS FULL          | SYS_TEMP_0FD9D660D_29B9BB |    14 |   112 |     2   (0)| 00:00:01 |
    |  17 |   VIEW                         |                           |     5 |   160 |     2   (0)| 00:00:01 |
    |  18 |    TABLE ACCESS FULL           | SYS_TEMP_0FD9D660E_29B9BB |     5 |    60 |     2   (0)| 00:00:01 |
    ------------------------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       6 - access("SYS_TBL_$2$"."DEPTNO"="SYS_TBL_$1$"."DEPTNO")
           filter("SYS_TBL_$2$"."DEPTNO"="SYS_TBL_$1$"."DEPTNO")
    
    
    Statistics
    ----------------------------------------------------------
             23  recursive calls
             33  db block gets
             39  consistent gets
              4  physical reads
           2172  redo size
            962  bytes sent via SQL*Net to client
            524  bytes received via SQL*Net from client
              2  SQL*Net roundtrips to/from client
              1  sorts (memory)
              0  sorts (disk)
             12  rows processed
    
    11:12:36 SCOTT@edw> 
    

    执行计划可以看出,没有默认排序了,无序,和列的顺序也无关


    同理部分grouping sets分组,例子

    11:12:36 SCOTT@edw> set autotrace off
    11:17:03 SCOTT@edw> SELECT a.dname,to_char(b.hiredate,'yyyy') hire_year,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY a.dname,GROUPING SETS(to_char(b.hiredate,'yyyy'),b.job);
    
    DNAME          HIRE JOB          SUM_SAL
    -------------- ---- --------- ----------
    SALES               MANAGER         2850
    SALES               CLERK            950
    ACCOUNTING          MANAGER         2450
    ACCOUNTING          PRESIDENT       5000
    ACCOUNTING          CLERK           1300
    RESEARCH            MANAGER         2975
    SALES               SALESMAN        5600
    RESEARCH            ANALYST         6000
    RESEARCH            CLERK           1900
    RESEARCH       1981                 5975
    SALES          1981                 9400
    RESEARCH       1987                 4100
    ACCOUNTING     1981                 7450
    ACCOUNTING     1982                 1300
    RESEARCH       1980                  800
    
    15 rows selected.
    
    Elapsed: 00:00:00.01
    11:17:05 SCOTT@edw> 
    

    注意此时的含义有较大的变化

    cube、rollup作为grouping sets的参数

    grouping sets只提供单列分组,没有合计功能,如果需要提供合计,则可以将rollup或cube作为参数,例子


    11:23:59 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY GROUPING sets(rollup(a.dname),ROLLUP(b.job));
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
                   CLERK           4150
                   SALESMAN        5600
                   PRESIDENT       5000
                   MANAGER         8275
                   ANALYST         6000
    ACCOUNTING                     8750
    RESEARCH                      10875
    SALES                          9400
                                  29025
                                  29025
    
    10 rows selected.
    
    Elapsed: 00:00:00.02
    11:24:02 SCOTT@edw> 
    

    问题是产生了两个合计行,因为rollup或cube作为grouping sets参数,相当于每个rollup或cube操作的union all,等价于image这就很好理解功能了

    对于重复合计,使用distinct剔除即可,另外后面还有特殊的函数可以使用,group_id可以用来剔除重复分组(和distinct功能是不一样的)

    rollup和cube作为参数也可以混用,而且也可以使用其它扩展功能,如部分分组、复合列分组、连接分组等

    rollup和cube不能接受grouping sets作为参数,rollup和cube互相作为参数也不行

    4 组合列分组、连接分组、重置列分组

    组合列分组、连接分组在复杂报表中用处很大。组合列分组用于剔除不必要的小计保留合计,连接分组按每个分组的笛卡尔积进行操作,分组更多更细。对于常规分组满足不了的需求可以考虑

    组合列即将多个列当做整体对待,下列对比表可以清晰展示不同之处

    image连接分组更强大,允许group by后出现多个rollup、cube和grouping sets操作,这样分组级别更多,报表更精细,实现很复杂的需求image实际上不管是同类型的连接分组还是不通类型的连接分组之间,最后的分组级别种类都是每个扩展分组级别种类的乘积,分组级别是笛卡尔积,比如rollup(a,b),rollup(c),最终3*2=6中分组级别


    重复列分组也就是group by中允许重复列,比如group by rollup(a,(a,b))、group by a,rollup(a,b)

    组合列分组

    例子

    14:48:13 SCOTT@edw> SELECT a.dname,to_char(b.hiredate,'yyyy') hire_year,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY rollup(a.dname,(to_char(b.hiredate,'yyyy'),b.job));
    
    DNAME          HIRE JOB          SUM_SAL
    -------------- ---- --------- ----------
    SALES          1981 CLERK            950
    SALES          1981 MANAGER         2850
    SALES          1981 SALESMAN        5600
    SALES                               9400
    RESEARCH       1980 CLERK            800
    RESEARCH       1981 ANALYST         3000
    RESEARCH       1981 MANAGER         2975
    RESEARCH       1987 CLERK           1100
    RESEARCH       1987 ANALYST         3000
    RESEARCH                           10875
    ACCOUNTING     1981 MANAGER         2450
    ACCOUNTING     1981 PRESIDENT       5000
    ACCOUNTING     1982 CLERK           1300
    ACCOUNTING                          8750
                                       29025
    
    15 rows selected.
    
    Elapsed: 00:00:00.00
    14:48:16 SCOTT@edw> 
    

    组合列分组可以实现部分rollup和部分cube分组类似效果并且加上合计

    但是这个也比较麻烦,对于需要cube、rollup合计并剔除部分小计的需求用grouping_id或grouping函数

    cube和rollup均可以转换为对应的grouping sets

    当然反向也可以,不过意义不大

    连接分组

    例子

    14:48:16 SCOTT@edw>  SELECT a.dname,to_char(b.hiredate,'yyyy') hire_year,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY rollup(a.dname,b.job),ROLLUP(to_char(b.hiredate,'yyyy'));
    
    DNAME          HIRE JOB          SUM_SAL
    -------------- ---- --------- ----------
    SALES               CLERK            950
    SALES               MANAGER         2850
    SALES               SALESMAN        5600
    SALES                               9400
    RESEARCH            CLERK           1900
    RESEARCH            ANALYST         6000
    RESEARCH            MANAGER         2975
    RESEARCH                           10875
    ACCOUNTING          CLERK           1300
    ACCOUNTING          MANAGER         2450
    ACCOUNTING          PRESIDENT       5000
    ACCOUNTING                          8750
                                       29025
    RESEARCH       1980 CLERK            800
    RESEARCH       1980                  800
                   1980                  800
    SALES          1981 CLERK            950
    SALES          1981 MANAGER         2850
    SALES          1981 SALESMAN        5600
    SALES          1981                 9400
    RESEARCH       1981 ANALYST         3000
    RESEARCH       1981 MANAGER         2975
    RESEARCH       1981                 5975
    ACCOUNTING     1981 MANAGER         2450
    ACCOUNTING     1981 PRESIDENT       5000
    ACCOUNTING     1981                 7450
                   1981                22825
    ACCOUNTING     1982 CLERK           1300
    ACCOUNTING     1982                 1300
                   1982                 1300
    RESEARCH       1987 CLERK           1100
    RESEARCH       1987 ANALYST         3000
    RESEARCH       1987                 4100
                   1987                 4100
    
    34 rows selected.
    
    Elapsed: 00:00:00.01
    14:57:57 SCOTT@edw> 
    

    相当于两个rollup的笛卡尔积

    理解了之后,利用连接分组,cube可以用rollup转换,如cube(a,b,c)等于rollup(a),rollup(b),rollup(c),但是对于rollup和grouping sets转换为cube一般没啥用

    连接分组一般是同类型的,不通类型的连接分组一般不常用

    重复列分组

    例子

    14:57:57 SCOTT@edw>   SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY a.dname,ROLLUP(a.dname,b.job);
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    RESEARCH       CLERK           1900
    RESEARCH       ANALYST         6000
    RESEARCH       MANAGER         2975
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    SALES                          9400
    RESEARCH                      10875
    ACCOUNTING                     8750
    SALES                          9400
    RESEARCH                      10875
    ACCOUNTING                     8750
    
    15 rows selected.
    
    Elapsed: 00:00:00.00
    15:07:14 SCOTT@edw> 
    

    没啥意义的例子,只不过说明语法允许

    5 三个扩展分组函数:grouping、grouping_id、group_id

    三个扩展分组函数:grouping、grouping_id、group_id在生成有意义的报表、结果进行过滤、排序中有很重要的作用,常用于复杂的报表查询

    注意grouping和grouping_id函数的参数不能是组合列

    grouping函数用于制作有意义的报表

    grouping_id函数对结果过滤以及排序

    group_id函数剔除重复行

    grouping函数

    在扩展group by子句来说,null表示小计或者合计,但是如果数据中本来就有null值呢?grouping函数专门处理扩展group by分组中null问题:

        它只接受一个参数,且参数来自rollup、cube、grouping sets中的列。当然也可以在group by而不在上述3个子句的列,不过结果肯定是0,没有意义

        grouping函数对于小计或合计的列返回1,否则返回0。用于区别是否原始数据中含null,常与decode一起使用。当然也可以确定分组级别从而过滤一些行,不过会很烦,一般用grouping_id替代

    例子

    15:34:01 SCOTT@edw>  SELECT decode(GROUPING(a.dname),1,'全部部门',a.dname) dname,decode(grouping(b.mgr),1,'全部老板',b.mgr) mgr,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY ROLLUP(a.dname,b.mgr);
    
    DNAME          MGR                                         SUM_SAL
    -------------- ---------------------------------------- ----------
    SALES          7698                                           6550
    SALES          7839                                           2850
    SALES          全部老板                                       9400
    RESEARCH       7566                                           6000
    RESEARCH       7788                                           1100
    RESEARCH       7839                                           2975
    RESEARCH       7902                                            800
    RESEARCH       全部老板                                      10875
    ACCOUNTING                                                    5000
    ACCOUNTING     7782                                           1300
    ACCOUNTING     7839                                           2450
    ACCOUNTING     全部老板                                       8750
    全部部门       全部老板                                      29025
    
    13 rows selected.
    
    Elapsed: 00:00:00.01
    15:34:12 SCOTT@edw> 
    

    grouping_id函数

    用于过滤分组级别和排序结果

    可以接受多个参数,来自rollup、cube、grouping sets中的列,按列从左往右顺序计算,是分组列则0,是小计或合计列为1,然后组合成为一个二进制数字叫做位向量,位向量转化为10进制即最后的结果,代表分组级别,如cube(a,b),那么grouping_id(a,b)代表的如下

    imagegrouping_id的好处是可以对多列进行计算得到分组级别

    例子

    15:46:26 SCOTT@edw>  SELECT a.dname,b.mgr,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY ROLLUP(a.dname,b.mgr,b.job) HAVING grouping_id(a.dname,b.mgr,b.job) IN (0,7);
    
    DNAME                 MGR JOB          SUM_SAL
    -------------- ---------- --------- ----------
    SALES                7698 CLERK            950
    SALES                7698 SALESMAN        5600
    SALES                7839 MANAGER         2850
    RESEARCH             7566 ANALYST         6000
    RESEARCH             7788 CLERK           1100
    RESEARCH             7839 MANAGER         2975
    RESEARCH             7902 CLERK            800
    ACCOUNTING                PRESIDENT       5000
    ACCOUNTING           7782 CLERK           1300
    ACCOUNTING           7839 MANAGER         2450
                                             29025
    
    11 rows selected.
    
    Elapsed: 00:00:00.00
    15:46:29 SCOTT@edw> 
    

    group_id函数

    group_id无参数,因为扩展group by子句允许多种复杂分组操作,有时候为了实现复杂报表,可能出现重复统计,而group_id函数可以区分重复分组结果,第一次出现为0,以后每次出现增1,group_id在select中出现没啥意义,通常用于having子句剔除重复统计

    例子

    15:46:29 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal,group_id() gi FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY GROUPING SETS(ROLLUP(a.dname),ROLLUP(b.job)) HAVING group_id()=0;
    
    DNAME          JOB          SUM_SAL         GI
    -------------- --------- ---------- ----------
                   CLERK           4150          0
                   SALESMAN        5600          0
                   PRESIDENT       5000          0
                   MANAGER         8275          0
                   ANALYST         6000          0
    ACCOUNTING                     8750          0
    RESEARCH                      10875          0
    SALES                          9400          0
                                  29025          0
    
    9 rows selected.
    
    Elapsed: 00:00:00.01
    15:55:55 SCOTT@edw>
    
  • 相关阅读:
    跨域导致FormsAuthentication.Decrypt报错:填充无效,无法被移除
    Php构造函数construct的前下划线是双的_
    DNN学习资源整理
    改进housemenu2使网站导航亲Seo并在新窗口中打开。
    推荐10款非常优秀的 HTML5 开发工具
    Ext.Net系列:安装与使用
    Devexpress 破解方法
    Microsoft Visual Studio 2010 遇到了异常,可能是由某个扩展导致的
    浮躁和互联网
    chrome 默认以 https打开网站
  • 原文地址:https://www.cnblogs.com/yongestcat/p/12550374.html
Copyright © 2020-2023  润新知