• C++语言基础(17)-运算符重载


    运算符重载的格式为:

    返回值类型 operator 运算符名称 (形参表列){
        //TODO:
    }

    一.在类里面实例运行符重载

    #include <iostream>
    using namespace std;
    
    class complex{
    public:
        complex();
        complex(double real, double imag);
    public:
        //声明运算符重载
        complex operator+(const complex &A) const;
        void display() const;
    private:
        double m_real;  //实部
        double m_imag;  //虚部
    };
    
    complex::complex(): m_real(0.0), m_imag(0.0){ }
    complex::complex(double real, double imag): m_real(real), m_imag(imag){ }
    
    //实现运算符重载
    complex complex::operator+(const complex &A) const{
        complex B;
        B.m_real = this->m_real + A.m_real;
        B.m_imag = this->m_imag + A.m_imag;
        return B;
    }
    
    void complex::display() const{
        cout<<m_real<<" + "<<m_imag<<"i"<<endl;
    }
    
    int main(){
        complex c1(4.3, 5.8);
        complex c2(2.4, 3.7);
        complex c3;
        c3 = c1 + c2;
        c3.display();
     
        return 0;
    }

    运行结果:

    6.7 + 9.5i

    1.运算符重载其实就是定义一个函数,在函数体内实现想要的功能,当用到该运算符时,编译器会自动调用这个函数。也就是说,运算符重载是通过函数实现的,它本质上是函数重载。

    2.operator是关键字,专门用于定义重载运算符的函数。我们可以将operator 运算符名称这一部分看做函数名,对于上面的代码,函数名就是operator+

    3.上面的例子中,我们在 complex 类中重载了运算符+,该重载只对 complex 对象有效。

    二.在全局范围内重载运算符

    运算符重载函数不仅可以作为类的成员函数,还可以作为全局函数。更改上面的代码,在全局范围内重载+,实现复数的加法运算:

    #include <iostream>
    using namespace std;
    
    class complex{
    public:
        complex();
        complex(double real, double imag);
    public:
        void display() const;
        //声明为友元函数
        friend complex operator+(const complex &A, const complex &B);
    private:
        double m_real;
        double m_imag;
    };
    
    complex operator+(const complex &A, const complex &B);
    
    complex::complex(): m_real(0.0), m_imag(0.0){ }
    complex::complex(double real, double imag): m_real(real), m_imag(imag){ }
    void complex::display() const{
        cout<<m_real<<" + "<<m_imag<<"i"<<endl;
    }
    
    //在全局范围内重载+
    complex operator+(const complex &A, const complex &B){
        complex C;
        C.m_real = A.m_real + B.m_real;
        C.m_imag = A.m_imag + B.m_imag;
        return C;
    }
    
    int main(){
        complex c1(4.3, 5.8);
        complex c2(2.4, 3.7);
        complex c3;
        c3 = c1 + c2;
        c3.display();
     
        return 0;
    }

    运算符重载函数不是 complex 类的成员函数,但是却用到了 complex 类的 private 成员变量,所以必须在 complex 类中将该函数声明为友元函数。

    当执行c3 = c1 + c2;语句时,编译器检测到+号两边都是 complex 对象,就会转换为类似下面的函数调用:

    c3 = operator+(c1, c2);

    三.重载数学运算符(+-*/) 

    #include <iostream>
    #include <cmath>
    using namespace std;
    
    //复数类
    class Complex{
    public:  //构造函数
        Complex(double real = 0.0, double imag = 0.0): m_real(real), m_imag(imag){ }
    public:  //运算符重载
        //以全局函数的形式重载
        friend Complex operator+(const Complex &c1, const Complex &c2);
        friend Complex operator-(const Complex &c1, const Complex &c2);
        friend Complex operator*(const Complex &c1, const Complex &c2);
        friend Complex operator/(const Complex &c1, const Complex &c2);
        friend bool operator==(const Complex &c1, const Complex &c2);
        friend bool operator!=(const Complex &c1, const Complex &c2);
        //以成员函数的形式重载
        Complex & operator+=(const Complex &c);
        Complex & operator-=(const Complex &c);
        Complex & operator*=(const Complex &c);
        Complex & operator/=(const Complex &c);
    public:  //成员函数
        double real() const{ return m_real; }
        double imag() const{ return m_imag; }
    private:
        double m_real;  //实部
        double m_imag;  //虚部
    };
    
    //重载+运算符
    Complex operator+(const Complex &c1, const Complex &c2){
        Complex c;
        c.m_real = c1.m_real + c2.m_real;
        c.m_imag = c1.m_imag + c2.m_imag;
        return c;
    }
    //重载-运算符
    Complex operator-(const Complex &c1, const Complex &c2){
        Complex c;
        c.m_real = c1.m_real - c2.m_real;
        c.m_imag = c1.m_imag - c2.m_imag;
        return c;
    }
    //重载*运算符  (a+bi) * (c+di) = (ac-bd) + (bc+ad)i
    Complex operator*(const Complex &c1, const Complex &c2){
        Complex c;
        c.m_real = c1.m_real * c2.m_real - c1.m_imag * c2.m_imag;
        c.m_imag = c1.m_imag * c2.m_real + c1.m_real * c2.m_imag;
        return c;
    }
    //重载/运算符  (a+bi) / (c+di) = [(ac+bd) / (c²+d²)] + [(bc-ad) / (c²+d²)]i
    Complex operator/(const Complex &c1, const Complex &c2){
        Complex c;
        c.m_real = (c1.m_real*c2.m_real + c1.m_imag*c2.m_imag) / (pow(c2.m_real, 2) + pow(c2.m_imag, 2));
        c.m_imag = (c1.m_imag*c2.m_real - c1.m_real*c2.m_imag) / (pow(c2.m_real, 2) + pow(c2.m_imag, 2));
        return c;
    }
    //重载==运算符
    bool operator==(const Complex &c1, const Complex &c2){
        if( c1.m_real == c2.m_real && c1.m_imag == c2.m_imag ){
            return true;
        }else{
            return false;
        }
    }
    //重载!=运算符
    bool operator!=(const Complex &c1, const Complex &c2){
        if( c1.m_real != c2.m_real || c1.m_imag != c2.m_imag ){
            return true;
        }else{
            return false;
        }
    }
    
    //重载+=运算符
    Complex & Complex::operator+=(const Complex &c){
        this->m_real += c.m_real;
        this->m_imag += c.m_imag;
        return *this;
    }
    //重载-=运算符
    Complex & Complex::operator-=(const Complex &c){
        this->m_real -= c.m_real;
        this->m_imag -= c.m_imag;
        return *this;
    }
    //重载*=运算符
    Complex & Complex::operator*=(const Complex &c){
        this->m_real = this->m_real * c.m_real - this->m_imag * c.m_imag;
        this->m_imag = this->m_imag * c.m_real + this->m_real * c.m_imag;
        return *this;
    }
    //重载/=运算符
    Complex & Complex::operator/=(const Complex &c){
        this->m_real = (this->m_real*c.m_real + this->m_imag*c.m_imag) / (pow(c.m_real, 2) + pow(c.m_imag, 2));
        this->m_imag = (this->m_imag*c.m_real - this->m_real*c.m_imag) / (pow(c.m_real, 2) + pow(c.m_imag, 2));
        return *this;
    }
    
    int main(){
        Complex c1(25, 35);
        Complex c2(10, 20);
        Complex c3(1, 2);
        Complex c4(4, 9);
        Complex c5(34, 6);
        Complex c6(80, 90);
       
        Complex c7 = c1 + c2;
        Complex c8 = c1 - c2;
        Complex c9 = c1 * c2;
        Complex c10 = c1 / c2;
        cout<<"c7 = "<<c7.real()<<" + "<<c7.imag()<<"i"<<endl;
        cout<<"c8 = "<<c8.real()<<" + "<<c8.imag()<<"i"<<endl;
        cout<<"c9 = "<<c9.real()<<" + "<<c9.imag()<<"i"<<endl;
        cout<<"c10 = "<<c10.real()<<" + "<<c10.imag()<<"i"<<endl;
       
        c3 += c1;
        c4 -= c2;
        c5 *= c2;
        c6 /= c2;
        cout<<"c3 = "<<c3.real()<<" + "<<c3.imag()<<"i"<<endl;
        cout<<"c4 = "<<c4.real()<<" + "<<c4.imag()<<"i"<<endl;
        cout<<"c5 = "<<c5.real()<<" + "<<c5.imag()<<"i"<<endl;
        cout<<"c6 = "<<c6.real()<<" + "<<c6.imag()<<"i"<<endl;
       
        if(c1 == c2){
            cout<<"c1 == c2"<<endl;
        }
        if(c1 != c2){
            cout<<"c1 != c2"<<endl;
        }
       
        return 0;
    }

    运行结果:

    c7 = 35 + 55i
    c8 = 15 + 15i
    c9 = -450 + 850i
    c10 = 1.9 + -0.3i
    c3 = 26 + 37i
    c4 = -6 + -11i
    c5 = 220 + 4460i
    c6 = 5.2 + 1.592i
    c1 != c2

    四.重载下标运算符[]

    #include <iostream>
    using namespace std;
    
    class Array{
    public:
        Array(int length = 0);
        ~Array();
    public:
        int & operator[](int i);
        const int & operator[](int i) const;
    public:
        int length() const { return m_length; }
        void display() const;
    private:
        int m_length;  //数组长度
        int *m_p;  //指向数组内存的指针
    };
    
    Array::Array(int length): m_length(length){
        if(length == 0){
            m_p = NULL;
        }else{
            m_p = new int[length];
        }
    }
    
    Array::~Array(){
        delete[] m_p;
    }
    
    int& Array::operator[](int i){
        return m_p[i];
    }
    
    const int & Array::operator[](int i) const{
        return m_p[i];
    }
    
    void Array::display() const{
        for(int i = 0; i < m_length; i++){
            if(i == m_length - 1){
                cout<<m_p[i]<<endl;
            }else{
                cout<<m_p[i]<<", ";
            }
        }
    }
    
    int main(){
        int n;
        cin>>n;
    
        Array A(n);
        for(int i = 0, len = A.length(); i < len; i++){
            A[i] = i * 5;
        }
        A.display();
       
        const Array B(n);
        cout<<B[n-1]<<endl;  //访问最后一个元素
       
        return 0;
    }

    运行结果:

    5
    0, 5, 10, 15, 20
    33685536

  • 相关阅读:
    笔记7-7
    输出九九乘法表
    eclipse配置Maven——菜鸟篇
    IOC和AOP使用扩展之AOP详解实现类
    --------Hibernate框架之双向多对多关系映射
    易买网----------有感
    有关于TreeSet的自我理解
    爱学习当当网----图片的切换,书栏的循环滚动
    有关于购物车买买买?剁手吧
    致童年,一生都无法忘记的技能
  • 原文地址:https://www.cnblogs.com/yongdaimi/p/7098834.html
Copyright © 2020-2023  润新知