• 二分查找(java)


    二分查找是一种查询效率非常高的查找算法。又称折半查找。

    起初在数据结构中学习递归时实现二分查找,实际上不用递归也可以实现,毕竟递归是需要开辟额外的空间的来辅助查询。本文就介绍两种方法

    二分查找算法思想

    有序的序列,每次都是以序列的中间位置的数来与待查找的关键字进行比较,每次缩小一半的查找范围,直到匹配成功。


    一个情景:将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。


    比如说有一个1-100的数字,我随机的选择其中一个数字(假设为60),你需要以最少的次数猜到我所选择的数字,每次猜测后,我会告诉你大了,小了,对了。

    假设你第一次从1开始猜,小了

    第二次:2  小了

    第三次:3  小了

    ……

    第五十九次:59 小了

    第六十次:60 对了

    这是简单的查找,每次猜测只能排除一个数字,如果我想的数字是100,那么你可能需要从1猜到100了!

    那么有没有更好的查找方式呢?

    答案当然是有的。

    如果我选的数字是60

    第一次:你从50开始猜,那么我告诉你小了,就排除了接近一半的数字,因为你至少知道1-50都小了

    第二次:你猜75,那么我告诉你大了,这样剩下的数字又少了一半!或许你已经想到了,我们每次猜测都是选择了中间的那个数字,从而使得每次都将余下的数字排除了一半。

    第三次:接下来,很明显应该猜测63,大了

    第四次:然后你猜56,小了

    第五次:然后你猜59 小了

    第六次:猜测61,大了

    第七次,你就能很明确的告诉我,答案是60!

    这样的查找方式,很明显比第一种要高效很多。第一种需要猜测60次才能猜出正确答案,而使用第二种方式,只需要七次就能猜出正确答案

    或许看到这里你已经明白了,这就是二分查找的方法。为什么二分查找要求有序,从这里也可以看出来。一般而言,对于包含n个元素的列表,用二分查找最多需要logn步,而简单查找最多需要n步。

    二分查找优缺点


    优点是比较次数少,查找速度快,平均性能好

    其缺点是要求待查表为有序表,且插入删除困难

    因此,折半查找方法适用于不经常变动而查找频繁的有序列表。


    使用条件:查找序列是顺序结构,有序。

    java代码实现
    使用递归实现

      /**
         * 使用递归的二分查找
         * title:recursionBinarySearch
         *
         * @param arr 有序数组
         * @param key 待查找关键字
         * @return 找到的位置
         */
        public static int recursionBinarySearch(int[] arr, int key, int low, int high) {
    
            if (key < arr[low] || key > arr[high] || low > high) {
                return -1;
            }
    
            int middle = (low + high) / 2;    //初始中间位置
            if (arr[middle] > key) {
                //比关键字大则关键字在左区域
                return recursionBinarySearch(arr, key, low, middle - 1);
            } else if (arr[middle] < key) {
                //比关键字小则关键字在右区域
                return recursionBinarySearch(arr, key, middle + 1, high);
            } else {
                return middle;
            }
        }

    不使用递归实现(while循环)

       /**
         * 不使用递归的二分查找
         * title:commonBinarySearch
         *
         * @param arr
         * @param key
         * @return 关键字位置
         */
        public static int commonBinarySearch(int[] arr, int key) {
            int low = 0;
            int high = arr.length - 1;
            int middle = 0;    //定义middle
    
            if (key < arr[low] || key > arr[high] || low > high) {
                return -1;
            }
    
            while (low <= high) {
                middle = (low + high) / 2;
                if (arr[middle] > key) {
             //比关键字大则关键字在左区域
                  high = middle - 1;
                } else if (arr[middle] < key) {
              //比关键字小则关键字在右区域
                    low = middle + 1;
                } else {
                    return middle;
                }
            }
            return -1;    //最后仍然没有找到,则返回-1
        }

    测试
    测试代码:

    public static void main(String[] args){
        int[]arr={1,3,5,7,9,11};
        int key=4;
        //int position = recursionBinarySearch(arr,key,0,arr.length - 1);
        int position=commonBinarySearch(arr,key);
        if(position==-1){
        System.out.println("查找的是"+key+",序列中没有该数!");
        }else{
        System.out.println("查找的是"+key+",找到位置为:"+position);
        }
    }

    recursionBinarySearch()的测试:key分别为0,9,10,15的查找结果
    查找的是0,序列中没有该数!

    查找的是9,找到位置为:4

    查找的是10,序列中没有该数!

    查找的是15,序列中没有该数!

    commonBinarySearch()的测试:key分别为-1,5,6,20的查找结果

    查找的是-1,序列中没有该数!

    查找的是5,找到位置为:2

    查找的是6,序列中没有该数!

    查找的是20,序列中没有该数!


    时间复杂度
    采用的是分治策略

    最坏的情况下两种方式时间复杂度一样:O(log2 N)

    最好情况下为O(1)

    空间复杂度
      算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数

    非递归方式:
      由于辅助空间是常数级别的所以:
      空间复杂度是O(1);

    递归方式:

     递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:
     空间复杂度:O(log2N )
    ————————————————

    参考:
    https://blog.csdn.net/zmeilin/article/details/81139814
    https://blog.csdn.net/maoyuanming0806/article/details/78176957

  • 相关阅读:
    [javaSE] 数组(获取最值)
    [javascript] Promise简单学习使用
    [javaSE] 基本类型(String相关)
    [android] 手机卫士黑名单功能(ListView结合SQLite增删改)
    [PHP] 重回基础(IO流)
    [PHP] 重回基础(Array相关函数)
    [PHP] 重回基础(date函数和strtotime函数)
    [HTML5] Canvas绘制简单图片
    [javaSE] 集合框架(TreeSet)
    [android] 手机卫士黑名单功能(ListView优化)
  • 原文地址:https://www.cnblogs.com/ynyhl/p/11883199.html
Copyright © 2020-2023  润新知