一、实验目的
科学技术中常常要求解常微分方程的定解问题,所谓数值解法就是求未知函数在一系列离散点处的近似值。
二、实验原理
三、实验程序
1. 尤拉公式程序
2、3、4的尤拉公式的程序参上改写。
四、实验内容
五、实验代码及运行结果
• MATLAB代码:
定义函数: function [A1,A2,B1,B2,C1,C2]=euler23(a,b,n,y0) %欧拉法解一阶常微分方程 %初始条件y0 h = (b-a)/n; %步长h %区域的左边界a %区域的右边界b x = a:h:b; m=length(x); %前向欧拉法 y = y0; for i=2:m y(i)=y(i-1)+h*oula(x(i-1),y(i-1)); A1(i)=x(i); A2(i)=y(i); end plot(x,y,'r-'); hold on; %改进欧拉法 y = y0; for i=2:m y(i)= y(i-1)+h/2*( oula(x(i-1),y(i-1))+oula(x(i),y(i-1))+h*(oula(x(i-1),x(i-1)))); B1(i)=x(i); B2(i)=y(i); end plot(x,y,'m-'); hold on; %欧拉两步公式 y=y0; y(2)=y(1)+h*oula(x(1),y(1)); for i=2:m-1 y(i+1)=y(i-1)+2*h*oula(x(i),y(i)); C1(i)=x(i); C2(i)=y(i); end plot(x,y,'b-'); hold on; %精确解用作图 xx = x; f = dsolve('Dy=-y+1','y(0)=0','x');%求出解析解 y = subs(f,xx); %将xx代入解析解,得到解析解对应的数值 plot(xx,y,'k--'); legend('前向欧拉法','改进欧拉法','欧拉两步法','解析解'); function f=oula(x,y) f=-y+1; 命令行窗口: [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,0)
运行结果:
N=50时:
N=100时:
故得精度越大时,几种方法求解值与准确值越来越接近。
• 另解
clear; format long; a = 0; b = 1; h = 0.1; d = 0; res = forward(a, b, h, d); x = res(1,:); y = res(2,:); xx = x; f = dsolve('Dy=-y+1','y(0)=0','x'); z = subs(f,xx); y(2,:) = z; plot(x, y); function result = forward(a, b, h, y) n = (b-a)/h; x0 = a; x1 = a; y0 = y; result(1,1) = x0; result(2,1) = y0; for m = 0:n-1 x1 = x1 + h; f0 = 1-y0; d = y0 + h*f0; y1 = calculate(y0, x1, d, h); %result = calculate(x1, d, h); x0 = x1; y0 = y1; result(1, m+2) = x0; result(2, m+2) = y0; end end function result = calculate(y0, x1, y1, h) acc = -6; now = 0.0; z1 = y1; while now >= -6 z0 = z1; f0 =1-z0; z1 = y0 + h*f0; now = log10(abs(z1-z0)); end result = z1; end
运行结果: