用途:
单源最短路径,不可以处理含负权边的图但可以用来判断是否存在负权回路;
复杂度O(kE) 【k <= 2, E 为边数】;
算法核心:
Bellman-Ford 算法的优化,实质与前算法一样,但优化的关键之处在于:只有那些前面被松弛过的点才有可能去松弛它们的邻接点。
模板(已优化):
#include <map> #include <set> #include <queue> #include <deque> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define INF 0x3f3f3f3f using namespace std; const int MAXN = 1e3 + 20; struct edge { int t, nxt, cost; }; edge e[MAXN*MAXN]; int head[MAXN], cnt; int dis[MAXN]; bool vis[MAXN]; int N, M; void init() { memset(head, -1, sizeof(head)); memset(e, 0, sizeof(e)); memset(vis, false, sizeof(vis)); fill(dis, dis+N+1, INF); cnt = 0; } void add(int from, int to, int weight) { e[cnt].t = to, e[cnt].cost = weight, e[cnt].nxt = head[from], head[from] = cnt++; } void debug() { for(int i = 1; i <= N; i++) { printf("%d ", i); for(int k = head[i]; k != -1; k = e[k].nxt) printf(" -> %d ", e[k].t); puts(""); } puts(""); } void SPFA(int s) { deque<int> que; que.push_back(s); dis[s] = 0; vis[s] = true; while(!que.empty()) { int u = que.front(); que.pop_front(); vis[u] = false; for(int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].t; if(dis[v] > dis[u] + e[i].cost) { dis[v] = dis[u] + e[i].cost; if(!vis[v]) { vis[v] = true; if(!que.empty() && dis[v] < dis[que.front()]) que.push_front(v); else que.push_back(v); } } } } } int main() { int a, b, c; while(~scanf("%d%d", &M, &N)){ init(); while(M--) { scanf("%d%d%d", &a, &b, &c); add(a, b, c); add(b, a, c); } ///debug(); SPFA(1); printf("%d ", dis[N]); } return 0; }