batch normalization是对每个batch的数据在每一层进行z-score标准化,z-score标准化相当于让数据符合标准正态分布
归一化:
1、把数变为(0,1)之间的小数
主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。
2、把有量纲表达式变为无量纲表达式
归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。
归一化算法有:
1.线性转换
y=(x-MinValue)/(MaxValue-MinValue)
2.对数函数转换:
y=log10(x)
3.反余切函数转换
y=atan(x)*2/PI
4.线性也与对数函数结合
式(1)将输入值换算为[-1,1]区间的值,
在输出层用式(2)换算回初始值,其中和分别表示训练样本集中负荷的最大值和最小值。
标准化
数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。
标准化算法有:
1.z-score标准化(或零-均值标准化)(常用)
y=(x-X的平均值)/X的标准差=(x-mean)/std
优点:当X的最大值和最小值未知,或孤立点左右了最大-最小规范化时,该方法有用
2.最小-最大规范化(线性变换)
y=( (x-MinValue) / (MaxValue-MinValue) )(new_MaxValue-new_MinValue)+new_minValue
3.小数定标规范化:通过移动X的小数位置来进行规范化
y= x/10的j次方 (其中,j使得Max(|y|) <1的最小整数
4.对数Logistic模式:
新数据=1/(1+e^(-原数据))
5.模糊量化模式:
新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2) ] X为原数据