• tensorflow训练代码


    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
    sess = tf.InteractiveSession()
    
    def weight_Variable(shape):
        initial = tf.truncated_normal(shape,stddev = 0.1)
        return tf.Variable(initial)
    
    def bias_Variable(shape):
        initial = tf.constant(0.1,shape = shape)
        return tf.Variable(initial)
    
    def conv2d(input,filter):
        return tf.nn.conv2d(input,filter,strides = [1,1,1,1],padding = 'SAME')
    
    def max_pool_2x2(input):
        return tf.nn.max_pool(input,[1,2,2,1],[1,2,2,1],padding = 'SAME')
    
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    x_image = tf.reshape(x,[-1,28,28,1])
    
    w_conv1 = weight_Variable([5,5,1,32])
    b_conv1 = bias_Variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    
    w_conv2 = weight_Variable([5,5,32,64]) 
    b_conv2 = bias_Variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    
    w_fc1 = weight_Variable([7*7*64,1024])
    b_fc1 = bias_Variable([1024])
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1) 
    
    
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    
    
    w_fc2 = weight_Variable([1024,10])
    b_fc2 = bias_Variable([10])
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2)
    
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_conv),reduction_indices = [1]))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    tf.global_variables_initializer().run()
    for i in range(20000):
        batch = mnist.train.next_batch(50)
        if i%100 == 0:
            train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y:batch[1],keep_prob:1.0})
            print('step %d,training accuracy %g'%(i,train_accuracy))
        train_step.run(feed_dict = {x:batch[0],y:batch[1],keep_prob:0.5})
    
    print('test accuary %g'%accuracy.eval(feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))
  • 相关阅读:
    浅谈页面的瀑布流布局
    前端常用动画库
    JavaScript七宗罪和一些槽点
    prototype与 _proto__的关系
    Javascript之傻傻理不清的原型链、prototype、__proto__
    C#开发微信门户及应用(26)-公众号微信素材管理
    C#开发微信门户及应用(25)-微信企业号的客户端管理功能
    基于InstallShield2013LimitedEdition的安装包制作
    Entity Framework 实体框架的形成之旅--Code First模式中使用 Fluent API 配置(6)
    Entity Framework 实体框架的形成之旅--Code First的框架设计(5)
  • 原文地址:https://www.cnblogs.com/ymjyqsx/p/6531610.html
Copyright © 2020-2023  润新知