• 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word


    字典树(查找树)

    26个分支
    作用:检测字符串是否在这个字典里面
    插入、查找

    字典树与哈希表的对比:
    时间复杂度:以字符来看:O(N)、O(N) 以字符串来看:O(1)、O(1)
    空间复杂度:字典树远远小于哈希表

    前缀相关的题目字典树优于哈希表
    字典树可以查询abc是否有ab的前缀

    字典树常考点:
    1.字典树实现
    2.利用字典树前缀特性解题
    3.矩阵类字符串一个一个字符深度遍历的问题(DFS+trie)
    dfs树和trie树同时遍历


    word searchII
    dfs+hash:时间复杂度大,后面遍历到有些字符就不用遍历了。
    剪枝

    在写结构体struct的时候,注意必须在{}之后加分号,不然会编译报错。

    //错误
    struct TrieNode {
            TrieNode* child[26];
            bool isWord = false;
            TrieNode(){
                for(int i = 0;i < 26;i++)
                    child[i] = NULL;
            }
        }
    //正确
    struct TrieNode {
            TrieNode* child[26];
            bool isWord = false;
            TrieNode(){
                for(int i = 0;i < 26;i++)
                    child[i] = NULL;
            }
        };

    leetcode 208. Implement Trie (Prefix Tree)

    https://www.cnblogs.com/grandyang/p/4491665.html

    注意:在insert或者add新的词的时候,必须在最后将isWord置为true,以表示这是一个单词的结尾。

    class Trie {
    public:
        struct TrieNode {
        public:
            TrieNode *child[26];
            bool isWord;
            TrieNode() : isWord(false) {
                for (auto &a : child) a = NULL;
            }
        };
        /** Initialize your data structure here. */
        Trie() {
            root = new TrieNode();
        }
        
        /** Inserts a word into the trie. */
        void insert(string word) {
            TrieNode* p = root;
            for(char w : word){
                int i = w - 'a';
                if(!p->child[i])
                    p->child[i] = new TrieNode();
                p = p->child[i];
            }
            p->isWord = true;
            return;
        }
        
        /** Returns if the word is in the trie. */
        bool search(string word) {
            TrieNode* p = root;
            for(char w : word){
                int i = w - 'a';
                if(!p->child[i])
                    return false;
                p = p->child[i];
            }
            return p->isWord;
        }
        
        /** Returns if there is any word in the trie that starts with the given prefix. */
        bool startsWith(string prefix) {
            TrieNode* p = root;
            for(char w : prefix){
                int i = w - 'a';
                if(!p->child[i])
                    return false;
                p = p->child[i];
            }
            return true;
        }
        TrieNode* root;
    };

    211. Add and Search Word - Data structure design

    https://www.cnblogs.com/grandyang/p/4507286.html

    class WordDictionary {
    public:
        struct TrieNode {
        public:
            TrieNode *child[26];
            bool isWord;
            TrieNode() : isWord(false) {
                for (auto &a : child) a = NULL;
            }
        };
        /** Initialize your data structure here. */
        WordDictionary() {
            root = new TrieNode();
        }
        
        /** Adds a word into the data structure. */
        void addWord(string word) {
            TrieNode* p = root;
            for(char w : word){
                int i = w - 'a';
                if(!p->child[i])
                    p->child[i] = new TrieNode();
                p = p->child[i];
            }
            p->isWord = true;
            return;
        }
        
        /** Returns if the word is in the data structure. A word could contain the dot character '.' to represent any one letter. */
        bool search(string word) {
            return search_core(word,root,0);
        }
        bool search_core(string word,TrieNode* p,int index){
            if(index == word.size())
                return p->isWord;
            if(word[index] == '.'){
                for(TrieNode* tmp : p->child){
                    if(tmp && search_core(word,tmp,index+1))
                        return true;
                }
                return false;
            }
            else{
                int i = word[index] - 'a';
                if(!p->child[i])
                    return false;
                return search_core(word,p->child[i],index+1);
            }
        }
        TrieNode* root;
    };
  • 相关阅读:
    【开源】我和 JAP(JA Plus) 的故事
    justauth-spring-boot-starter V1.3.5 发布成功
    JustAuth 1.15.9 版发布,支持飞书、喜马拉雅、企业微信网页登录
    详细介绍如何自研一款"博客搬家"功能
    推荐一款自研的Java版开源博客系统OneBlog
    JavaScript常用方法
    Markdown 语法学习
    Sublime Text常用设置之个人配置
    webStorm常用设置之过滤文件夹
    HTTP详解
  • 原文地址:https://www.cnblogs.com/ymjyqsx/p/10936139.html
Copyright © 2020-2023  润新知