Level:
Medium
题目描述:
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
思路分析:
题意是让在一个数组中的一些数之前添加“+”,其它的数之前添加“-”,从而让数组之和达到给定的数。
我们将添加“+”的数放入集合P,其它的数放入集合N,于是我们有:
sum(P) - sum(N) = target
sum(P) + sum(N) = sum
于是有sum(P) = (target + sum) / 2,那么不妨这样理解题意,从一个数组中选定一些数,使它们的和为sum(P),如此就变成了很经典的0/1背包问题,从一个n大小的背包中选出总和为sum(P)的方案个数。
状态表示:dp[i] [j]代表前i个数中和为j的方案个数。
状态转移方程:dp[i] [j] = dp[i-1] [j] + dp[i-1] [j-nums[i]],dp[0] [0] = 1
返回结果:dp[n] [target],n为数组大小,target为sum(P)。
如此时间复杂度为O(N^2),空间复杂度为O(M*N)。
代码:
public class Solution{
public int findTargetSumWays(int[] nums, int S){
int sum=0;
for(int i=0;i<nums.length;i++){
sum=sum+nums[i];
}
if(sum<S||S<-sum)
return 0;
int target=(sum+S)/2;
int []dp=new int [target+1]; //dp[i]表示和为 i的方案数。
dp[0]=1;
for(int i=0;i<nums.length;i++){
for(int j=target;j>=nums[i];j--){
dp[j]=dp[j]+dp[j-nums[i]];
}
}
return dp[target];
}
}