接上节继续,通常在做数据分析时需要指定时间范围,比如:"每天凌晨1点统计前一天的订单量" 或者 "每个整点统计前24小时的总发货量"。这个统计时间段,就称为统计窗口。Flink中支持多种Window统计,今天介绍二种常见的窗口:TumbingWindow及SlidingWindow。
如上图,最下面是时间线,假设每1分钟上游系统产生1条数据,分别对应序号1~7。如果每隔1分钟,需要统计前3分钟的数据,这种就是SlidingWindow。如果每2分钟的数据做1次统计(注:2次相邻的统计之间,没有数据重叠部分),这种就是TumbingWindow。
在开始写示例代码前,再来说一个概念:时间语义。
通常每条业务数据都有自己的"业务发生时间"(比如:订单数据有“下单时间”,IM聊天消息有"消息发送时间"),由于网络延时等原因,数据到达flink时,flink有一个"数据接收时间"。那么在数据分析时,前面提到的各种窗口统计应该以哪个时间为依据呢?这就是时间语义。 flink允许开发者自行指定用哪个时间来做为处理依据,大多数业务系统通常会采用业务发生时间(即:所谓的事件时间)。
下面还是以WordCount这个经典示例来演示一番:(flink版本:1.11.2)
1、准备数据源
仍以kafka作为数据源,准备向其发送以下格式的数据:
{ "event_datetime": "2020-12-19 14:10:21.209", "event_timestamp": "1608358221209", "word": "hello" }
注意:这里event_timestamp相当于业务时间(即:事件时间)对应的时间戳,word为每次要统计的单词。event_datetime不参与处理,只是为了肉眼看日志更方便。
写一个java类,不停发送数据:(每10秒生成一条随机数据,1分钟共6条)
package com.cnblogs.yjmyzz.flink.demo; import com.google.gson.Gson; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.common.serialization.StringSerializer; import java.text.SimpleDateFormat; import java.util.*; /** * @author 菩提树下的杨过 */ public class KafkaProducerSample { private static String topic = "test3"; private static Gson gson = new Gson(); private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS"); public static void main(String[] args) throws InterruptedException { Properties p = new Properties(); p.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); p.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); p.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(p); String[] words = new String[]{"hello", "world", "flink"}; Random rnd = new Random(); try { while (true) { Map<String, String> map = new HashMap<>(); map.put("word", words[rnd.nextInt(words.length)]); long timestamp = System.currentTimeMillis(); map.put("event_timestamp", timestamp + ""); map.put("event_datetime", sdf.format(new Date(timestamp))); String msg = gson.toJson(map); ProducerRecord<String, String> record = new ProducerRecord<String, String>(topic, msg); kafkaProducer.send(record); System.out.println(msg); Thread.sleep(10000); } } finally { kafkaProducer.close(); } } }
2. TumbingWindow示例
package com.cnblogs.yjmyzz.flink.demo; import com.google.gson.Gson; import com.google.gson.reflect.TypeToken; import org.apache.flink.api.common.eventtime.*; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.common.serialization.SerializationSchema; import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.tuple.Tuple3; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.api.windowing.windows.TimeWindow; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; import org.apache.flink.util.Collector; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Map; import java.util.Properties; /** * @author 菩提树下的杨过(http : / / yjmyzz.cnblogs.com /) */ public class KafkaStreamTumblingWindowCount { private final static Gson gson = new Gson(); private final static String SOURCE_TOPIC = "test3"; private final static String SINK_TOPIC = "test4"; private final static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm"); public static void main(String[] args) throws Exception { // 1 设置环境 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //指定使用eventTime作为时间标准 env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); // 2. 定义数据 Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("zookeeper.connect", "localhost:2181"); props.put("group.id", "test-read-group-2"); props.put("deserializer.encoding", "GB2312"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("auto.offset.reset", "latest"); DataStreamSource<String> text = env.addSource(new FlinkKafkaConsumer011<>( SOURCE_TOPIC, new SimpleStringSchema(), props)); // 3. 处理逻辑 DataStream<Tuple3<String, Integer, String>> counts = text.assignTimestampsAndWatermarks(new WatermarkStrategy<String>() { @Override public WatermarkGenerator<String> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) { return new WatermarkGenerator<String>() { private long maxTimestamp; private long delay = 100; @Override public void onEvent(String s, long l, WatermarkOutput watermarkOutput) { Map<String, String> map = gson.fromJson(s, new TypeToken<Map<String, String>>() { }.getType()); String timestamp = map.getOrDefault("event_timestamp", l + ""); maxTimestamp = Math.max(maxTimestamp, Long.parseLong(timestamp)); } @Override public void onPeriodicEmit(WatermarkOutput watermarkOutput) { watermarkOutput.emitWatermark(new Watermark(maxTimestamp - delay)); } }; } }).flatMap(new FlatMapFunction<String, Tuple3<String, Integer, String>>() { @Override public void flatMap(String value, Collector<Tuple3<String, Integer, String>> out) throws Exception { //解析message中的json Map<String, String> map = gson.fromJson(value, new TypeToken<Map<String, String>>() { }.getType()); String word = map.getOrDefault("word", ""); String eventTimestamp = map.getOrDefault("event_timestamp", "0"); //获取每个统计窗口的时间(用于显示) String windowTime = sdf.format(new Date(TimeWindow.getWindowStartWithOffset(Long.parseLong(eventTimestamp), 0, 60 * 1000))); if (word != null && word.trim().length() > 0) { //收集(类似:map-reduce思路) out.collect(new Tuple3<>(word.trim(), 1, windowTime)); } } }) //按Tuple3里的第0项,即:word分组 .keyBy(value -> value.f0) //按每1分整点开固定窗口计算 .timeWindow(Time.minutes(1)) //然后对Tuple3里的第1项求合 .sum(1); // 4. 打印结果 counts.addSink(new FlinkKafkaProducer010<>("localhost:9092", SINK_TOPIC, (SerializationSchema<Tuple3<String, Integer, String>>) element -> (element.f2 + " (" + element.f0 + "," + element.f1 + ")").getBytes())); counts.print(); // execute program env.execute("Kafka Streaming WordCount"); } }
代码看着一大堆,但是并不复杂,解释 一下:
31-34 行是一些常量定义 ,从test3这个topic拿数据,处理好的结果,发送到test4这个topic
42行指定时间语义:使用事件时间做为依据。但是这还不够,不是空口白话,说用“事件时间”就用“事件时间”,flink怎么知道哪个字段代表事件时间? 62-77行,这里给出了细节,解析kafka消息中的json体,然后把event_timestamp提取出来,做为时间依据。另外65行,还指定了允许数据延时100ms(这个可以先不管,后面学习watermark时,再详细解释 )
89-90行,为了让wordCount的统计结果更友好,本次窗口对应的起始时间,使用静态方法TimeWindow.getWindowStartWithOffset计算后,直接放到结果里了。
102行, timeWindow(Time.munites(1)) 这里指定了使用tumblingWindow,每次统计1分钟的数据。(注:这里的1分钟是从0秒开始,到59秒结束,即类似: 2020-12-12 14:00:00.000 ~ 2020-12-12 14:00:59.999)
运行结果:
下面是数据源的kafka消息日志(截取了部分)
... {"event_datetime":"2020-12-19 14:32:36.873","event_timestamp":"1608359556873","word":"hello"} {"event_datetime":"2020-12-19 14:32:46.874","event_timestamp":"1608359566874","word":"world"} {"event_datetime":"2020-12-19 14:32:56.874","event_timestamp":"1608359576874","word":"hello"} {"event_datetime":"2020-12-19 14:33:06.875","event_timestamp":"1608359586875","word":"hello"} {"event_datetime":"2020-12-19 14:33:16.876","event_timestamp":"1608359596876","word":"world"} {"event_datetime":"2020-12-19 14:33:26.877","event_timestamp":"1608359606877","word":"hello"} {"event_datetime":"2020-12-19 14:33:36.878","event_timestamp":"1608359616878","word":"world"} {"event_datetime":"2020-12-19 14:33:46.879","event_timestamp":"1608359626879","word":"flink"} {"event_datetime":"2020-12-19 14:33:56.879","event_timestamp":"1608359636879","word":"hello"} {"event_datetime":"2020-12-19 14:34:06.880","event_timestamp":"1608359646880","word":"world"} {"event_datetime":"2020-12-19 14:34:16.881","event_timestamp":"1608359656881","word":"world"} {"event_datetime":"2020-12-19 14:34:26.883","event_timestamp":"1608359666883","word":"hello"} {"event_datetime":"2020-12-19 14:34:36.883","event_timestamp":"1608359676883","word":"flink"} {"event_datetime":"2020-12-19 14:34:46.885","event_timestamp":"1608359686885","word":"flink"} {"event_datetime":"2020-12-19 14:34:56.885","event_timestamp":"1608359696885","word":"world"} {"event_datetime":"2020-12-19 14:35:06.885","event_timestamp":"1608359706885","word":"flink"} ...
flink的处理结果:
... 3> (world,2,2020-12-19 14:33) 4> (flink,1,2020-12-19 14:33) 2> (hello,3,2020-12-19 14:33) 3> (world,3,2020-12-19 14:34) 2> (hello,1,2020-12-19 14:34) 4> (flink,2,2020-12-19 14:34) ...
3.SlidingWindow示例
package com.cnblogs.yjmyzz.flink.demo; import com.google.gson.Gson; import com.google.gson.reflect.TypeToken; import org.apache.flink.api.common.eventtime.*; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.common.serialization.SerializationSchema; import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.tuple.Tuple3; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.api.windowing.windows.TimeWindow; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; import org.apache.flink.util.Collector; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Map; import java.util.Properties; /** * @author 菩提树下的杨过(http : / / yjmyzz.cnblogs.com /) */ public class KafkaStreamSlidingWindowCount { private final static Gson gson = new Gson(); private final static String SOURCE_TOPIC = "test3"; private final static String SINK_TOPIC = "test4"; private final static SimpleDateFormat sdf1 = new SimpleDateFormat("yyyy-MM-dd HH:mm"); private final static SimpleDateFormat sdf2 = new SimpleDateFormat("HH:mm"); public static void main(String[] args) throws Exception { // 1 设置环境 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //指定使用eventTime作为时间标准 env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); // 2. 定义数据 Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("zookeeper.connect", "localhost:2181"); props.put("group.id", "test-read-group-1"); props.put("deserializer.encoding", "GB2312"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("auto.offset.reset", "latest"); DataStreamSource<String> text = env.addSource(new FlinkKafkaConsumer011<>( SOURCE_TOPIC, new SimpleStringSchema(), props)); // 3. 处理逻辑 DataStream<Tuple3<String, Integer, String>> counts = text.assignTimestampsAndWatermarks(new WatermarkStrategy<String>() { @Override public WatermarkGenerator<String> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) { return new WatermarkGenerator<String>() { private long maxTimestamp; private long delay = 1000; @Override public void onEvent(String s, long l, WatermarkOutput watermarkOutput) { Map<String, String> map = gson.fromJson(s, new TypeToken<Map<String, String>>() { }.getType()); String timestamp = map.getOrDefault("event_timestamp", l + ""); maxTimestamp = Math.max(maxTimestamp, Long.parseLong(timestamp)); } @Override public void onPeriodicEmit(WatermarkOutput watermarkOutput) { watermarkOutput.emitWatermark(new Watermark(maxTimestamp - delay)); } }; } }).flatMap(new FlatMapFunction<String, Tuple3<String, Integer, String>>() { @Override public void flatMap(String value, Collector<Tuple3<String, Integer, String>> out) throws Exception { //解析message中的json Map<String, String> map = gson.fromJson(value, new TypeToken<Map<String, String>>() { }.getType()); String eventTimestamp = map.getOrDefault("event_timestamp", "0"); String windowTimeStart = sdf1.format(new Date(TimeWindow.getWindowStartWithOffset(Long.parseLong(eventTimestamp), 2 * 60 * 1000, 1 * 60 * 1000))); String windowTimeEnd = sdf2.format(new Date(1 * 60 * 1000 + TimeWindow.getWindowStartWithOffset(Long.parseLong(eventTimestamp), 2 * 60 * 1000, 1 * 60 * 1000))); String word = map.getOrDefault("word", ""); if (word != null && word.trim().length() > 0) { out.collect(new Tuple3<>(word.trim(), 1, windowTimeStart + " ~ " + windowTimeEnd)); } } }) //按Tuple3里的第0项,即:word分组 .keyBy(value -> value.f0) //每1分钟算1次,每次算过去2分钟内的数据 .timeWindow(Time.minutes(2), Time.minutes(1)) //然后对Tuple3里的第1项求合 .sum(1); // 4. 打印结果 counts.addSink(new FlinkKafkaProducer010<>("localhost:9092", SINK_TOPIC, (SerializationSchema<Tuple3<String, Integer, String>>) element -> (element.f2 + " (" + element.f0 + "," + element.f1 + ")").getBytes())); counts.print(); // execute program env.execute("Kafka Streaming WordCount"); } }
与TumbingWindow最大的区别在于105行,除了指定窗口的size,还指定了slide值,有兴趣的同学可以研究下这个方法:
public WindowedStream<T, KEY, TimeWindow> timeWindow(Time size, Time slide) { if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) { return window(SlidingProcessingTimeWindows.of(size, slide)); } else { return window(SlidingEventTimeWindows.of(size, slide)); } }
输出结果:
发送到kafka的数据源片段:
... {"event_datetime":"2020-12-19 14:32:36.873","event_timestamp":"1608359556873","word":"hello"} {"event_datetime":"2020-12-19 14:32:46.874","event_timestamp":"1608359566874","word":"world"} {"event_datetime":"2020-12-19 14:32:56.874","event_timestamp":"1608359576874","word":"hello"} {"event_datetime":"2020-12-19 14:33:06.875","event_timestamp":"1608359586875","word":"hello"} {"event_datetime":"2020-12-19 14:33:16.876","event_timestamp":"1608359596876","word":"world"} {"event_datetime":"2020-12-19 14:33:26.877","event_timestamp":"1608359606877","word":"hello"} {"event_datetime":"2020-12-19 14:33:36.878","event_timestamp":"1608359616878","word":"world"} {"event_datetime":"2020-12-19 14:33:46.879","event_timestamp":"1608359626879","word":"flink"} {"event_datetime":"2020-12-19 14:33:56.879","event_timestamp":"1608359636879","word":"hello"} {"event_datetime":"2020-12-19 14:34:06.880","event_timestamp":"1608359646880","word":"world"} {"event_datetime":"2020-12-19 14:34:16.881","event_timestamp":"1608359656881","word":"world"} {"event_datetime":"2020-12-19 14:34:26.883","event_timestamp":"1608359666883","word":"hello"} {"event_datetime":"2020-12-19 14:34:36.883","event_timestamp":"1608359676883","word":"flink"} {"event_datetime":"2020-12-19 14:34:46.885","event_timestamp":"1608359686885","word":"flink"} {"event_datetime":"2020-12-19 14:34:56.885","event_timestamp":"1608359696885","word":"world"} {"event_datetime":"2020-12-19 14:35:06.885","event_timestamp":"1608359706885","word":"flink"} ...
处理后的结果:
... 3> (world,2,2020-12-19 14:33) 4> (flink,1,2020-12-19 14:33) 2> (hello,3,2020-12-19 14:33) 3> (world,3,2020-12-19 14:34) 2> (hello,1,2020-12-19 14:34) 4> (flink,2,2020-12-19 14:34) ...