• 七大排序的个人总结(三)


    堆排序(Heap:

    要讲堆排序之前先要来复习一下完全二叉树的知识。

    定义:

    对一棵具有n个结点的二叉树按层序编号,如果编号为i(0 <= i <= n)的结点与同样深度的满二叉树编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

     

    如上面就是一棵完全二叉树。

    我们主要会使用的的性质是父结点与子结点的关系:

    标号为n的结点的左孩子为2 * n + 1(如果有的话),右孩子为2 * n + 2(如果有的话)

    由于完全二叉树的结点的编号是连接的,所以我们可以用一个数组来保存这种数据结构。结点之间的关系可以通过上面的公式进行计算得到。

    那什么是堆呢?

    堆是具有下列性质的完全二叉树:

    每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆(或大根堆);或者每个结点的值都小于或等于其左右孩子结点的值。称为小顶堆(小根堆)。

     

    如图:就是一大根堆。将它转化为数组就是这样的:

    { 9,7,5,6,1,4,2,0,3 }

    可以看到一个大概的情况是:0个元素是最大的,前面的元素普遍比后面的大,但这不是绝对的比如例子中的1就跑到4前边去了。

    建堆:

    那接下来就是第一个问题了,怎么创建一个大根堆呢?也就是解决怎么将给定的一个数组调整成大根堆

    假如我们给定一个比较极端的例子{ 10,20,30,40,50,60,70,80 },加个0是为了方便不与结点的编号产生混淆。

     

    对于这样的一个堆,我们应该怎么进行调整呢?

    对于堆排序而言,一个比较直观的想法就是从下面开始,把值比较大的元素往上推。这样进行到根位置时,就可以得到一个一个最大的根了

    所以,我们应该从最后一个非叶子结点开始调整。

    那么怎么确定哪一个是最后一个非叶子结点呢?

    其实这完全是可以从完全二叉树的性质中得到的。还记得吗?

    左孩子为2 * n + 1

    右孩子为2 * n + 2

    所以最后一个非叶子结点的编号为array.length / 2 – 1。array就是给定的数组。

    所以我们第一个要调整的结点是编号为3的结点,拿它的值跟两个孩子的值做比较(它只有一个孩子)。显然,40和80这两个要交换位置了。

     

    接下来就轮到编号为2的结点了,进行比较后显然是70比较大一点,也进行交换:

     

    同样的道理,编号为1的结点也进行调节:

     

    请注意,这个时候问题就来了。结点1是符合条件了,可以对于以结点3这根的这棵子树就不符合大根堆的要求了,所以我们要重新对编号为3的结点再做一次调整。得到:

     

    我们以同样的方法对编号为0的结点也进行同样的调整。最后就可以得到第一个大根堆了。

     

    这一个过程我们可以称为建堆。我们将数据展开成数组:

    { 80,50,70,40,10,60,30,20 }

    不难发现这一个过程中,我们已经把很多值比较大的数字也放到了比较靠前的位置。这一点相当重要,也可以说是堆排序的精华所在。

    得到了大根堆之后,我们是可以得到一个最大值了,接下来要做的,就是不断的移除这个堆顶值,与堆尾的值进行交换,堆的长度减小1,然后进行重新的调整

     

    显然,每次都是在堆顶删除,在堆顶开始调整。

     

    之后就是一直重复这个过程直到只剩下一个元素时,就可以完成排序工作了。

    相信只要跟着这个思路和这几张图,自己模拟几次还是很好理解的。

    接下来看看代码是怎么实现的:

    public static void sort(int[] array) {
    
        init(array);
    
        // 这个过程就是不断的从堆顶移除,调整
    
        for (int i = 1; i < array.length; i++) {
    
           int temp = array[0];
    
           int end = array.length - i;
    
           array[0] = array[end];
    
           array[end] = temp;
    
           adjust(array, 0, end);
    
        }
    
    }
    
     
    
    private static void init(int[] array) {
    
        for (int i = array.length / 2 - 1; i >= 0; i--) {
    
           adjust(array, i, array.length);
    
        }
    
    }
    
     
    
    private static void adjust(int[] array, int n, int size) {
    
        int temp = array[n]; // 先拿出数据
    
        int child = n * 2 + 1; // 这个是左孩子
    
        while (child < size) { // 这个保证还有左孩子
    
           // 如果右孩子也存在的话,并且右孩子的值比左孩子的大
    
           if (child + 1 < size && array[child + 1] > array[child]) {
    
               child++;
    
           }
    
           if (array[child] > temp) {
    
               array[n] = array[child];
    
               n = child; // n需要重新计算
    
               child = n * 2 + 1; // 重新计算左孩子
    
           } else {
    
               // 这种情况说明左右孩子的值都比父结点的值小
    
               break;
    
           }
    
        }
    
        array[n] = temp;
    
    }

    堆排序的代码量比较多,主要的工作其实是在adjust上。

    在adjust这个过程中有几个要注意的:

    一个是要注意数组的边界,因为我们每次是把最大值放在最后,然后它就不能再参与调整了。

    其次,是最后一个非叶子结点可能只有一个孩子,这也是需要注意的。

    堆排序到底快在哪呢?

    还是来看一个极端的例子:

    { 1,2,3,4,5,6,7 }

    在建堆的时候第一次比较之后的结果应该是这样的:(7和3交换了位置)

    { 1,2,7,4,5,6,3

    第二次调整之后是:

    { 1,5,7,4,2,6,3 }(5和2交换了位置)

    然后是:

    7,5,1,4,2,6,3 }(7和1交换了位置,1的位置不对,需要再调整)

    { 7,5,6,4,2,1,3 }(6和1交换了位置)

    可以看到,仅仅用了4次比较和4次交换就已经把数组给调整成“比较有序”了。

    这个其实是由完全二叉树的性质决定的,因为子结点的编号和父结点的编号存在着两倍(粗略)的差距。

    也就说父结点与子结点的数据进行一次交换移动的距离是比较大的(相对于步进)。这个与冒泡和直接插入的“步进”是有明显的区别的。可以说,堆排序的优势在于它具有高效的元素移动效率(这是个人总结,不严谨)

    其次,我们在调整堆的时候,可以发现有一半的数据是我们不用动到的。这就使比较次数大大地减少。这个就是很好地利用在建堆的时候保存下来的状态。还是那句话“让上一次的操作结果为下一次操作服务”。

    最后回顾一下七个排序:

    冒泡排序:好吧,它是中枪次数最多的,最大的优点应该是衬托其他算法的高效。

    选择排序:我个人认为它是最符合人的思维习惯的,缺点在于比较次数太多了,但其实它在对少量数据,或者是对于只排序一部分(比如只选出前十名之类的),这种情况下,选择排序就很不错了,因为它可以“部分排序”。

    直接插入排序:其实它还不算太差,在应对一些平时的使用时,性能还是可以的。直接插入排序是希尔排序的基础。

    希尔排序:这个曾经把我纠结很久的算法,它的外表很难让人看出它的强大。它在几个比较高效的排序算法中代码是最少的,也很容易一次性写出。但理解有点困难。我觉得主要是那个步长序列太难让人一眼看出它到底做了些什么。个人觉得要理解希尔排序首先要弄清楚“基本有序”这个有什么用和希尔排序的前n-1个步长做的就是这些事。先让整个数组变得基本有序,基于一个事实,就是对于基本有序的数组而言,直接插入排序的效率是很高的

    归并排序:分治和递归的经典使用,胜就胜在元素的比较次数比较少(貌似说是最少的)。缺点是需要比较大的辅助空间,这个有时会成为限制条件(因为过大的空间消耗有时是不允许的)。

    快速排序:如其名,虽存在一定的不稳定性,理论上在最差的情况下,快速排序会退化成选择排序,但可以通过一些手段来使这种情况发生的概率相当的小。

    堆排序:个人觉得是最难一口气写出来的排序算法,特别是调整结点的算法每次都要写得小心翼翼(当然,可能是平时写得少)。但它确实是一个很优秀的排序算法,堆排序在元素的移动效率和比较次数上都是比较优秀的。操作系统中堆可是一个重要的数据结构。我记得当时第一次写出堆排序的感叹是“原来数组还可以这么用”。

    最后让这几大高手进行一次PK吧,测试的数据是3000000个范围在0 ~ 30000000的随机数。

    得到的结果大概是这样的:

        

    差距并不算太大,可以看到,最快的还是Java类库提供的方法,它为什么能比快速排序还快呢?

    因为它是综合了其他几个算法的特点,比如说在元素很少的时候,直接插入排序可能会快一点,数据量大一点的时候归并可能会快一点,当数据很大的时候,用快速排序可以把数组分成小部分。所以它不是一个人在战斗!

    好了,至此,七个排序算法也算是复习了一次,还是那句话,本人菜鸟一个,对这几个算法理解有限,出错之处还请各位指出。

    一点个人感受,算法这东西有时以为自己弄懂了,其实还差得远了,有时候看十次书不如自己写一次代码,写了十次代码不如跟别人讲一次。因为这个过程会遇到很多自己以前从没想过的事。这就是我写博客的初衷。

  • 相关阅读:
    SpringCloud之初入江湖
    消息中间件RabbitMQ
    分布式搜索引擎ElasticSearch
    MongoDB简介
    SpringBoot和SpringCloud版本对应
    终于有人把Elasticsearch原理讲透了!
    nginx不停服,重新加载配置
    小程序自定义头部标题栏并且自适应各种手机屏幕(滚动头部渐隐渐现)
    Navicat链接数据库报错1130解决方案
    传统的小程序登录 和 云开发小程序登录
  • 原文地址:https://www.cnblogs.com/yjiyjige/p/3258849.html
Copyright © 2020-2023  润新知