• poj 1061 青蛙的约会(扩展欧几里得)


    链接:poj 1061

    解题思路扩展欧几里德应用:求方程Ax+By=C的一组解(x0,y0)。 

    设青蛙跳t次相遇。由题意可得方程:

          x+mt=y+nt+CL  

        --> x-y=(n-m)t+CL 且 (x-y),(n-m),L已知.就是求满足方程的最小正整数解t

    定理:设a,b,c为随意整数。若方程ax+by=c的一组整数解为(x0。y0)。

    则它的随意整数解都能够写成(x0+kb',y0-ka'),当中a'=a/gcd(a,b),b'=b/gcd(a。b),k为随意整数。

    推论:设当中x0为全部整数解中最接近零的解。设用exgcd()解出来的解为x1。则x0=x1%b'=x1%(b/gcd(a,b))

       若x0非负。x0即为最小正整数解;若求出的x0为负数,这x0+b'为最小正整数解。

    注:数据非常大 须要使用longlong

    #include<stdio.h>
    __int64 gcd(__int64 a,__int64 b)
    {
        return b==0?

    a:gcd(b,a%b); } void exgcd(__int64 a,__int64 b,__int64 &x1,__int64 &y1) { __int64 t; if(b==0){ x1=1; y1=0; return ; } exgcd(b,a%b,x1,y1); t=x1; x1=y1; y1=t-a/b*y1; } int main() { __int64 m,n,x,y,l,c,x1,y1; scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l); c=gcd(l,(m-n)); if((y-x)%c!=0) printf("Impossible "); else{ exgcd(l,m-n,x1,y1); y1=(y-x)/c*y1; y1=y1%(l/c); if(y1<0) y1+=l; printf("%I64d ",y1); } return 0; }



  • 相关阅读:
    作业: 小型购物系统1---按顺序编写
    字典操作学习小结
    字符操作学习笔记小结
    列表,元组等学习笔记小结
    模块及其数据类型小结
    python3学习笔记----基础知识1
    压力山大
    下周一开始上班啦!
    凌晨12点,沉迷学习,无法自拔...
    web前端开发2018年12月找工作总结
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/7290820.html
Copyright © 2020-2023  润新知