此次Memblaze的project师团队也是从存储系统、PCIe SSD以及闪存控制器三个层次做了技术演讲,并在现场引发了一波讨论热潮。
Memblaze解决方式project师李月宽发表了主题为《NVMeSSD data reliability and protection》的演讲,这个主题分享中他介绍了NVMe SSD的可靠性评定标准、PBlaze4中提高数据可靠性的技术等内容。
元数据保护
图3:PBlaze4的元数据保护技术
如上图所看到的PBlaze元数据保护技术主要通过pSLC和多副本实现。pSLC 是MLC 的变体。是同一个NAND颗粒上划分出来的一块区域,具有SLC低错误率和高寿命的特点。并且一般pSLC 的擦写次数能够达到20000次,是MLC擦写寿命的6倍。
PBlaze4的元数据会有4个副本,并且跨LUN,跨channel进行存储。
这样的机制通过添加元数据的冗余度保障数据安全,并且元数据被分散存储在多个NAND颗粒上,所以仅仅要有一个LUN 能够工作。元数据就能被读取更新。
掉电保护技术
而不同功率电容的放电量不同,满负载功率的电容放电更快。
经验证。在25w功率下,PBlaze4的电容能够提供25ms的电力保护时间,全然满足异常掉电时DRAM中数据裸盘的刷写时间,保证数据的完整性。
图6则从电容的角度介绍了两种添加供电时间的方法。
首先是提高电容的容量,这样的方法比較easy实现,不必添加额外的电路设计。可是这样的方案成本较高。须要使用超级电容或者多个电容实现。
另外一种方法是改变电压。这样的方法的优势是成本较低,能够使用常见的铝电解电容实现。可是其缺陷是电路设计复杂。须要升压和降压的电压转换器。
而且占用的PCB面积也较大。
对于两种效果,Memblaze通过測试做了对照。測试结果如图7:
图7
基于以上理论与測试结果,PBlaze4拥有完备的掉电保护解决方式。
从PCIe SSD的设计和使用角度来说,温度对于设备性能、稳定性及寿命都有很大的影响。PBlaze4安装了多个温度传感器用于监控设备不同部分的温度。 Memblaze为PBlaze4设计了可靠的温度保护逻辑。而这个保护逻辑算法就是高温保护技术的核心。
图9:高温保护
在温度上升到第一警戒点(上图中T1st threshold,这一温度阈值可通过NVMe setfeature指令进行设置)时,PBlaze4会向主机端发送critical warning的警告并自己主动减少读写性能。以防止温度进一步升高。当温度下降后,自己主动恢复满性能。须要指出的是这个过程无须用户干预。对于用户而言全然透明。
假设温度进一步升高至第二警戒点(上中T2nd threshold)时。全部读写操作会立马停止。以防止电路过热损坏NAND中的数据。此时须要技术人员又一次检測散热环境后。方可继续使用该产品。
另一个临界值的点为Trestore。当设备温度从第一警戒点降到T restore时,设备性能会逐步恢复到正常水平。最后须要指出的是,三个温度临界点均是选取核温柔板温中较高的值。