• 题解 P3372 【【模板】线段树 1】


    线段树模板题

    所以,我偏不用线段树

    奇了怪了

    主要思路:平衡树——Splay

    Splay是可以很好的维护区间的。

    我这里主要讲如何用Splay维护区间。

    我们知道Splay是严格按照中序遍历的顺序的,用rotate操作并不会改变这种性质,所以我们我们可以考虑一下一棵二叉树的中序遍历的特点。

    如果我们把左端点splay到树根,把右端点splay到树根的右儿子位置,我们再做下中序遍历,,,(可以自行脑补)

    是不是根的右儿子的左子树的信息就是这段区间的信息?

    所以我们用Splay维护区间时我们是提取区间。

    完整代码:

    (福利:其中还有插入节点,删除节点等操作哦QwQ,附带节点垃圾桶,可回收旧结点)

    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <vector>
    using namespace std;
    #define go(i, j, n, k) for (int i = j; i <= n; i += k)
    #define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
    #define rep(i, x) for (int i = h[x]; i; i = e[i].nxt)
    #define mn 100010
    #define ld long double
    #define fi first
    #define se second
    #define inf 1 << 30
    #define ll long long
    #define root 1, n, 1
    #define lson l, m, rt << 1
    #define rson m + 1, r, rt << 1 | 1
    inline ll read()
    {
        ll x = 0, f = 1;
        char ch = getchar();
        while (ch > '9' || ch < '0')
        {
            if (ch == '-')
                f = -f;
            ch = getchar();
        }
        while (ch >= '0' && ch <= '9')
        {
            x = x * 10 + ch - '0';
            ch = getchar();
        }
        return x * f;
    }
    vector<int> ljt;
    struct tree
    {
        int ch[2], sze, fa;
        ll w, sum, col;
        tree(int _sze = 0, int _fa = 0, int _w = 0, int _sum = 0, int _col = 0)
            : sze(_sze), fa(_fa), w(_w), sum(_sum), col(_col) { ch[1] = ch[0] = 0; }
    } z[mn];
    int n, m, tot, a[mn];
    inline int newnode(int v = 0)
    {
        int rt;
        if (ljt.empty())
            rt = ++tot;
        else
            rt = ljt.back(), ljt.pop_back();
        z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = 0;
        z[rt].sze = 1;
        z[rt].w = z[rt].sum = v;
        return rt;
    }
    inline void deletenode(int rt)
    {
        z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = z[rt].w = z[rt].sum = 0;
        z[rt].sze = 1;
        ljt.push_back(rt);
    }
    inline void update(int rt)
    {
        z[rt].sum = z[rt].w, z[rt].sze = 1;
        if(z[rt].ch[0])
            z[rt].sum += z[z[rt].ch[0]].sum, z[rt].sze += z[z[rt].ch[0]].sze;
        if(z[rt].ch[1])
            z[rt].sum += z[z[rt].ch[1]].sum, z[rt].sze += z[z[rt].ch[1]].sze;
    }
    inline void push_col(int rt)
    {
        if(z[rt].col)
        {
            z[z[rt].ch[0]].col += z[rt].col;
            z[z[rt].ch[1]].col += z[rt].col;
            z[z[rt].ch[0]].sum += z[z[rt].ch[0]].sze * z[rt].col;
            z[z[rt].ch[1]].sum += z[z[rt].ch[1]].sze * z[rt].col;
            z[z[rt].ch[0]].w += z[rt].col;
            z[z[rt].ch[1]].w += z[rt].col;
            z[rt].col = 0;
        }
    }
    inline int iden(int rt)
    {
        return z[z[rt].fa].ch[0] == rt ? 0 : 1;
    }
    inline void conn(int x, int y, int son)
    {
        z[x].fa = y;
        z[y].ch[son] = x;
    }
    inline void rotate(int x)//敲好记的rotate函数!
    {
        int y = z[x].fa;
        int moot = z[y].fa;
        int yson = iden(x);
        int mootson = iden(y);
        int B = z[x].ch[yson ^ 1];
        conn(B, y, yson), conn(y, x, yson ^ 1), conn(x, moot, mootson);
        update(y), update(x);
    }
    inline void splay(int x, int &k)//传址要注意
    {
        if (x == k)
            return;
        int p = z[k].fa;
        while (z[x].fa != p)
        {
            push_col(x);
            int y = z[x].fa;
            if (z[y].fa != p)
                rotate(iden(y) ^ iden(x) ? x : y);
            rotate(x);
        }
        k = x;
    }
    inline int findkth(int rt, int k)
    {
        while (233)
        {
            push_col(rt);
            if (z[rt].ch[0] && k <= z[z[rt].ch[0]].sze)
                rt = z[rt].ch[0];
            else
            {
                if (z[rt].ch[0])
                    k -= z[z[rt].ch[0]].sze;
                if (!--k)
                    return rt;
                rt = z[rt].ch[1];
            }
        }
    }
    inline void insert(int &rt, int p, int v)//传址要注意
    {
        int x = findkth(rt, p);
        splay(x, rt);
        int y = findkth(rt, p + 1);
        int ooo = z[rt].ch[1];
        splay(y, ooo);
        z[y].ch[0] = newnode(v);
        z[z[y].ch[0]].fa = y;
        update(z[y].ch[0]), update(y), update(x);
    }
    inline void erase(int &rt, int p)//传址要注意
    {
        int y = findkth(rt, p);
        splay(y, rt);
        int x = findkth(rt, p + 1);
        int ooo = z[rt].ch[1];
        splay(x, ooo);
        int oo = z[x].ch[1];
        z[oo].fa = y;
        z[y].ch[1] = oo;
        deletenode(x);
        update(y);
    }
    inline int getRange(int &rt, int l, int r)//传址要注意
    {
        int x = findkth(rt, l);
        splay(x, rt);
        int y = findkth(rt, r + 2);
        int ooo = z[rt].ch[1];
        splay(y, ooo);
        return z[y].ch[0];
    }
    inline void modify(int &rt, int l, int r, ll v)//传址要注意
    {
        int x = getRange(rt, l, r);
        z[x].col += v;
        z[x].w += v;
        z[x].sum += z[x].sze * v;
        update(z[rt].ch[1]);
        update(rt);
    }
    inline ll query(int &rt, int l, int r)//传址要注意
    {
        int x = getRange(rt, l, r);
        return z[x].sum;
    }
    inline void build(int rt, int l, int r)
    {
        int m = (l + r) >> 1;
        z[rt].w = a[m];
        if (l <= m - 1)
        {
            z[rt].ch[0] = newnode();
            z[z[rt].ch[0]].fa = rt;
            build(z[rt].ch[0], l, m - 1);
        }
        if (m + 1 <= r)
        {
            z[rt].ch[1] = newnode();
            z[z[rt].ch[1]].fa = rt;
            build(z[rt].ch[1], m + 1, r);
        }
        update(rt);
    }
    inline void debug(int rt)//debug专用,利用中序遍历
    {
        //if(!z[rt].ch[0] && !z[rt].ch[1])
        //	return;
        if (rt == 0)
            return;
        debug(z[rt].ch[0]);
        printf("%d %d %d
    ", z[rt].w, z[rt].sum, z[rt].sze);
        debug(z[rt].ch[1]);
    }
    int main()
    {
        n = read();
        m = read();
        go(i, 1, n, 1) a[i] = read();
        int rot = ++tot;
        build(rot, 0, n + 1);
        //debug(rot);
        //cout << query(rot, 1, n) << "
    ";
        go(i, 1, m, 1)
        {
            int s = read(), x = read(), y = read();
            if (s == 1)
            {
                int v = read();
                modify(rot, x, y, v);
            }
            else
            {
                cout << query(rot, x, y) << "
    ";
            }
        }
        return 0;
    }
    
    
    

    本蒟蒻的第一篇Splay的题解,若有不恰当的地方请大家指教

  • 相关阅读:
    Django model转字典的几种方法
    使用Nagios打造专业的业务状态监控
    Etcd安全配置之Basic Auth认证
    ELK日志系统之通用应用程序日志接入方案
    ELK日志系统之使用Rsyslog快速方便的收集Nginx日志
    中小团队落地配置中心详解
    ELK构建MySQL慢日志收集平台详解
    Django model select的各种用法详解
    Python:每日一题003
    Python:每日一题002
  • 原文地址:https://www.cnblogs.com/yizimi/p/10056279.html
Copyright © 2020-2023  润新知