• 国外大神制作的一个很棒的matplotlib 可视化教程


    国外大神制作的一个很棒的matplotlib 可视化教程

    参考:https://www.machinelearningplus.com/plots/top-50-matplotlib-visualizations-the-master-plots-python/

     

    ♔一:关联

    • 散点图
    • 带边界的气泡图
    • 散点图与最佳拟合线
    • 与stripplot抖动
    • 计数图
    • 边缘直方图
    • 边缘Boxplot
    • 相关图
    • 矩阵图

    ♔二:偏差

    • 发散酒吧
    • 分歧的文本
    • 分散点图
    • 用标记分散棒棒糖图表
    • 面积图

    ♔三:排行

    • 条形图
    • 棒棒糖图表
    • 点图
    • 坡度图
    • 哑铃情节

    ♔四:分配

    • 连续变量的直方图
    • 分类变量的直方图
    • 密度图
    • 密度曲线与直方图
    • Joy Plot
    • 分布式点图
    • 箱形图
    • Dot + Box Plot
    • 小提琴剧情
    • 人口金字塔
    • 分类图

    ♔五:组成

    • 华夫饼图
    • 饼形图
    • 树形图
    • 条形图

    ♔六:更改

    • 时间序列图
    • 带有峰和谷的时间序列注释
    • 自相关图
    • 交叉关联图
    • 时间序列分解图
    • 多个时间序列
    • 使用辅助Y轴绘制不同比例的绘图
    • 带有误差带的时间序列
    • 堆积面积图
    • 区域图未拆封
    • 日历热图
    • 季节性情节

    ♔七:组

    • 树状图
    • 群集图
    • 安德鲁斯曲线
    • 平行坐标

    11 散点图 Scatteplot

    Scatteplot 是用于研究两个变量之间关系的经典和基本图。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在Matplotlib,你可以方便地使用。

    # Import dataset 
    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    import seaborn as sns
    
    import warnings; warnings.simplefilter('ignore')
    
    
    midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")
    
    zhongwen_font = fm.FontProperties(fname='C:WindowsFonts华文楷体.ttf') 
    
    
    # Step 1: 准备数据 
    # 创建尽可能多的颜色,因为有独特的midwest['category']
    categories = np.unique(midwest['category'])
    colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]
    
    # Step 2:为每个类别绘制图形
    plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')
    
    for i, category in enumerate(categories):
        plt.scatter('area', 'poptotal', 
                    data=midwest.loc[midwest.category==category, :], 
                    s=20, c=colors[i], label=str(category))
    
    # Step 3:展示优化:设置图例等
    plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),
                  xlabel='地区', ylabel='人口')
    
    plt.xticks(fontsize=12, fontproperties = zhongwen_font)
    plt.yticks(fontsize=12, fontproperties = zhongwen_font)
    plt.title("中西部地区人口分布图", fontsize=22, fontproperties = zhongwen_font)
    
    plt.legend(fontsize=12, prop = zhongwen_font)    
    plt.show()  

    2. 带边界的气泡图

    有时,您希望在边界内显示一组点以强调其重要性。在此示例中,您将从应该被环绕的数据帧中获取记录,并将其传递给下面的代码中描述的记录。encircle()

    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    from matplotlib import patches
    
    import seaborn as sns
    
    
    import warnings; warnings.simplefilter('ignore')
    sns.set_style("white")
    
    # S1: 准备数据
    midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")
    
    zhongwen_font = fm.FontProperties(fname='C:WindowsFontssimsun.ttc') 
    
    # 创建尽可能多的颜色,因为有独特的midwest['category']y']
    categories = np.unique(midwest['category'])
    colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]
    
    # S2: 为每个类别绘制图形
    fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')    
    
    for i, category in enumerate(categories):
        plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :], s='dot_size', c=colors[i], label=str(category), edgecolors='black', linewidths=.5)
    
    # S3: 边界
    # https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot
    def encircle(x,y, ax=None, **kw):
        if not ax: ax=plt.gca()
        p = np.c_[x,y]
        hull = ConvexHull(p)
        poly = plt.Polygon(p[hull.vertices,:], **kw)
        ax.add_patch(poly)
    
    # 选择要包围的数据
    midwest_encircle_data = midwest.loc[midwest.state=='IN', :]                         
    
    # 围绕顶点绘图   
    encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="k", fc="gold", alpha=0.1)
    encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="firebrick", fc="none", linewidth=1.5)
    
    # S4: 优化图例
    plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),
                  xlabel='Area', ylabel='Population')
    
    plt.xticks(fontsize=12, fontproperties = zhongwen_font)
    plt.yticks(fontsize=12, fontproperties = zhongwen_font)
    plt.title("气泡图", fontsize=22, fontproperties = zhongwen_font)
    plt.legend(fontsize=12, prop = zhongwen_font)    
    plt.show()   

    3. 带线性回归最佳拟合线的散点图

    如果你想了解两个变量如何相互改变,那么最合适的线就是要走的路。下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从下面的调用中删除该参数。

    # Import dataset 
    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    import seaborn as sns
    
    import warnings; warnings.simplefilter('ignore')
    # S1 : 数据
    df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
    zhongwen_font = fm.FontProperties(fname='C:WindowsFontssimsun.ttc') 
    
    df_select = df.loc[df.cyl.isin([4,8]), :]
    
    # S2 : 作图
    sns.set_style("white")
    gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df_select, 
                         aspect=1.6, robust=True, palette='tab10', 
                         scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
    
    # S3 :优化
    gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
    plt.title("带线性回归最佳拟合线的散点图", fontsize=20, fontproperties = zhongwen_font)
    plt.show()

    每个回归线都在自己的列中

    或者,您可以在其自己的列中显示每个组的最佳拟合线。你可以通过在里面设置参数来实现这一点。

    # Import Data
    df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
    df_select = df.loc[df.cyl.isin([4,8]), :]
    
    # Each line in its own column
    sns.set_style("white")
    gridobj = sns.lmplot(x="displ", y="hwy", 
                         data=df_select, 
                         height=7, 
                         robust=True, 
                         palette='Set1', 
                         col="cyl",
                         scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
    
    # Decorations
    gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
    plt.show()

    4. 抖动图 Stripplot

    通常,多个数据点具有完全相同的X和Y值。结果,多个点相互绘制并隐藏。为避免这种情况,请稍微抖动点,以便您可以直观地看到它们。这很方便使用

    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    from matplotlib import patches
    
    import seaborn as sns
    
    
    import warnings; warnings.simplefilter('ignore')
    
    # S1:数据
    df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
    zhongwen_font = fm.FontProperties(fname='C:WindowsFontssimsun.ttc') 
    
    # S2:作图
    fig, ax = plt.subplots(figsize=(16,10), dpi= 80)    
    sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)
    
    # S3:优化
    plt.title('使用抖动图避免点重叠', fontsize=22, fontproperties = zhongwen_font)
    plt.show()

    1. 相关图

    Correlogram用于直观地查看给定数据帧(或2D数组)中所有可能的数值变量对之间的相关度量。

    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    from matplotlib import patches
    
    import seaborn as sns
    
    
    import warnings; warnings.simplefilter('ignore')
    
    
    # S1: 数据
    df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
    zhongwen_font = fm.FontProperties(fname='C:WindowsFontssimsun.ttc') 
    
    # S2: plot 作图
    plt.figure(figsize=(12,10), dpi= 80)
    sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True)
    
    # S3: 图例优化
    plt.title('相关图', fontsize=22, fontproperties = zhongwen_font)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()

    9. 矩阵图

    成对图是探索性分析中的最爱,以理解所有可能的数字变量对之间的关系。它是双变量分析的必备工具。

    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    from matplotlib import patches
    
    import seaborn as sns
    
    
    import warnings; warnings.simplefilter('ignore')
    
    # Load Dataset
    df = sns.load_dataset('iris')
    
    # Plot
    plt.figure(figsize=(10,8), dpi= 80)
    sns.pairplot(df, kind="scatter", hue="species", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5))
    plt.show()

    23. 直方密度线图

    带有直方图的密度曲线将两个图表传达的集体信息汇集在一起,这样您就可以将它们放在一个图形而不是两个图形中。

    %matplotlib
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    from matplotlib import patches
    from matplotlib import font_manager as fm
    from matplotlib import pyplot as plt
    from scipy.spatial import ConvexHull
    from matplotlib import patches
    
    import seaborn as sns
    
    
    import warnings; warnings.simplefilter('ignore')
    
    # S1:数据
    df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
    zhongwen_font = fm.FontProperties(fname='C:WindowsFontssimsun.ttc') 
    
    # S2:作图
    plt.figure(figsize=(13,10), dpi= 80)
    sns.distplot(df.loc[df['class'] == 'compact', "cty"], color="dodgerblue", label="Compact", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
    sns.distplot(df.loc[df['class'] == 'suv', "cty"], color="orange", label="SUV", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
    sns.distplot(df.loc[df['class'] == 'minivan', "cty"], color="g", label="minivan", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
    plt.ylim(0, 0.35)
    
    # S3:图例
    plt.title('不同车型类型城市里程密度图', fontsize=22, fontproperties = zhongwen_font)
    plt.legend()
    plt.show()

    45. 日历热力图

    与时间序列相比,日历映射是可视化基于时间的数据的备选和不太优选的选项。虽然可以在视觉上吸引人,但数值并不十分明显。然而,它可以很好地描绘极端值和假日效果。

    import pandas as pd
    import matplotlib as mpl
    from matplotlib import pyplot as plt
    import calmap as calmap

    # S1:数据
    df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/yahoo.csv", parse_dates=['date'])
    df.set_index('date', inplace=True)

    # S2:绘图
    plt.figure(figsize=(16,10), dpi= 80)
    calmap.calendarplot(df['2014']['VIX.Close'], fig_kws={'figsize': (16,10)}, yearlabel_kws={'color':'black', 'fontsize':14}, subplot_kws={'title':'Yahoo Stock Prices'})
    plt.show()

     

    by : 一只阿木木

  • 相关阅读:
    用Asp.Net实现类似DWR的功能
    Icesword FAQ端口 进程 服务篇
    用脚本实时显示Linux网络流量
    为DropDownList 添加optgroup分组以及为ListItem 加式样
    C# 中Treeview无限级目录实现
    .NET 2.0 WinForm Control DataGridView 编程36计(一)
    如何:从 Windows 窗体 DataGridView 控件中移除自动生成的列
    分组显示的select下拉选框
    如何用命令行查找并快速定位ARP病毒母机
    在.NET上如何根据字符串动态创建控件
  • 原文地址:https://www.cnblogs.com/yizhiamumu/p/11850019.html
Copyright © 2020-2023  润新知