[BZOJ4913][SDOI2017]遗忘的集合
因为这题重新学了一下生成函数相关知识
不过还是感觉这个东西考到也做不出。。
普通型母函数:
$frac{1}{1-x}=1+x+x^2+x^3+...$
这个东西的证明我们可以利用等比数列
然后令$x={x'}^{k}$
$frac{1}{1-{x'}^k}=1+{x'}{k}+{x'}^{2*k}+{x'}^{3*k}+...$
扩展二项式定理:
$C(n,m)=frac{n*(n-1)*...*(n-m+1)}{m!}$
当m=1时值为0
会发现这个东西的主要扩展在于允许了n是负数,当n是正数时m>n依旧为0
泰勒展开:
$f(x)=frac{f(x0)}{0!}+frac{f'(x0)*(x-x0)}{1!}+frac{f''(x0)*(x-x0)^2}{2!}+....$
然后泰勒展开的两个经典例子是
$ln(1+x)=sum_{i=1}^{INF}limits {frac{{(-1)}^{i-1}*x^i}{i}}$
$e^x=1+frac{x}{1!}+frac{x^2}{2!}+frac{x^3}{3!}...$
这两个用定义都挺好证的。。
其他的等碰到再加吧。。