• JVM总结-堆


    1. 什么是分代,为什么要分代?

    如果没有进行分代,新创建的对象和生命周期很长的对象放在一起,每次垃圾回收就需要遍历所有的对象,开销太大,严重影响GC效率。

    分代后,新创建的对象会在新生代中分配内存,经过多次回收仍存活的对象放在老年代中。新生代中的对象存活时间短,只需要在新生代中进行频繁GC。老年代中对象生命周期长,GC频率相对较低。这样呢,每次GC就不用遍历所有的对象

    Java 虚拟机的堆划分

    前面提到,Java 虚拟机将堆划分为新生代和老年代。其中,新生代又被划分为 Eden 区,以及两个大小相同的 Survivor 区

    默认情况下,Java 虚拟机采取的是一种动态分配的策略(对应 Java 虚拟机参数 -XX:+UsePSAdaptiveSurvivorSizePolicy),根据生成对象的速率,以及 Survivor 区的使用情况动态调整 Eden 区和 Survivor 区的比例。

    当然,你也可以通过参数 -XX:SurvivorRatio (默认8:1:1)来固定这个比例。但是需要注意的是,其中一个 Survivor 区会一直为空,因此比例越低浪费的堆空间将越高。

    通常来说,当我们调用 new 指令时,它会在 Eden 区中划出一块作为存储对象的内存。由于堆空间是线程共享的,因此直接在这里边划空间是需要进行同步的。

    否则,将有可能出现两个对象共用一段内存的事故。如果你还记得前两篇我用“停车位”打的比方的话,这里就相当于两个司机(线程)同时将车停入同一个停车位,因而发生剐蹭事故。

    Java 虚拟机的解决方法是为每个司机预先申请多个停车位,并且只允许该司机停在自己的停车位上。那么当司机的停车位用完了该怎么办呢(假设这个司机代客泊车)?

    答案是:再申请多个停车位便可以了。这项技术被称之为 TLAB(Thread Local Allocation Buffer,对应虚拟机参数 -XX:+UseTLAB,默认开启)。

    具体来说,每个线程可以向 Java 虚拟机申请一段连续的内存,比如 2048 字节,作为线程私有的 TLAB。

    这个操作需要加锁,线程需要维护两个指针(实际上可能更多,但重要也就两个),一个指向 TLAB 中空余内存的起始位置,一个则指向 TLAB 末尾。

    接下来的 new 指令,便可以直接通过指针加法(bump the pointer)来实现,即把指向空余内存位置的指针加上所请求的字节数。

    如果加法后空余内存指针的值仍小于或等于指向末尾的指针,则代表分配成功。否则,TLAB 已经没有足够的空间来满足本次新建操作。这个时候,便需要当前线程重新申请新的 TLAB。

     当 Eden 区的空间耗尽了怎么办?这个时候 Java 虚拟机便会触发一次 Minor GC,来收集新生代的垃圾。存活下来的对象,则会被送到 Survivor 区。

    GC开始时,对象只会存在于Eden区和From Survivor区,To Survivor区是空的(作为保留区域)。GC进行时,Eden区中所有存活的对象都会被复制到To Survivor区,而在From Survivor区中,仍存活的对象会根据它们的年龄值决定去向,年龄值达到年龄阀值(默认为15,新生代中的对象每熬过一轮垃圾回收,年龄值就加1GC分代年龄存储在对象的header中)的对象会被移到老年代中,没有达到阀值的对象会被复制到To Survivor区。接着清空Eden区和From Survivor区,新生代中存活的对象都在To Survivor区。接着, From Survivor区和To Survivor区会交换它们的角色,也就是新的To Survivor区就是上次GC清空的From Survivor区,新的From Survivor区就是上次GCTo Survivor区,总之,不管怎样都会保证To Survivor区在一轮GC后是空的。GC时当To Survivor区没有足够的空间存放上一次新生代收集下来的存活对象时,需要依赖老年代进行分配担保,将这些对象存放在老年代中。

    哪些对象会被存放在老年代?

    1. 对象很大
    -XX:PretenureSizeThreshold=3145728 3M
    2. 长期存活的对象
    -XX:MaxTenuringThreshold=15
    3. 动态对象年龄判定
    相同年龄所有对象的大小总和 > Survivor空间的一半

    强引用

    软引用:内存不够用的时候,软引用会被回收,尽管它是可达的

    弱引用:不管内存够不够用,都会被回收

    虚引用:?

    垃圾回收算法和垃圾回收器是什么关系? 垃圾回收器是垃圾回收算法的实现。
    分配担保
    Minor GC 之前检查 老年代最大可用连续空间是否>新生代所有对象总空间

    Minor GC : 新生代
    Major GC : 老年代
    Full GC : 新生代 + 老年代

    总而言之,当发生 Minor GC 时,我们应用了标记 - 复制算法,将 Survivor 区中的老存活对象晋升到老年代,然后将剩下的存活对象和 Eden 区的存活对象复制到另一个 Survivor 区中。理想情况下,Eden 区中的对象基本都死亡了,那么需要复制的数据将非常少,因此采用这种标记 - 复制算法的效果极好。

    Minor GC 的另外一个好处是不用对整个堆进行垃圾回收。但是,它却有一个问题,那就是老年代的对象可能引用新生代的对象。也就是说,在标记存活对象的时候,我们需要扫描老年代中的对象。如果该对象拥有对新生代对象的引用,那么这个引用也会被作为 GC Roots。

    这样一来,岂不是又做了一次全堆扫描呢?

    卡表

    HotSpot 给出的解决方案是一项叫做卡表(Card Table)的技术。该技术将整个堆划分为一个个大小为 512 字节的卡,并且维护一个卡表,用来存储每张卡的一个标识位。这个标识位代表对应的卡是否可能存有指向新生代对象的引用。如果可能存在,那么我们就认为这张卡是脏的。

    在进行 Minor GC 的时候,我们便可以不用扫描整个老年代,而是在卡表中寻找脏卡,并将脏卡中的对象加入到 Minor GC 的 GC Roots 里。当完成所有脏卡的扫描之后,Java 虚拟机便会将所有脏卡的标识位清零。

    由于 Minor GC 伴随着存活对象的复制,而复制需要更新指向该对象的引用。因此,在更新引用的同时,我们又会设置引用所在的卡的标识位。这个时候,我们可以确保脏卡中必定包含指向新生代对象的引用。

    在 Minor GC 之前,我们并不能确保脏卡中包含指向新生代对象的引用。其原因和如何设置卡的标识位有关。

    首先,如果想要保证每个可能有指向新生代对象引用的卡都被标记为脏卡,那么 Java 虚拟机需要截获每个引用型实例变量的写操作,并作出对应的写标识位操作。

    这个操作在解释执行器中比较容易实现。但是在即时编译器生成的机器码中,则需要插入额外的逻辑。这也就是所谓的写屏障(write barrier,注意不要和 volatile 字段的写屏障混淆)。

    写屏障需要尽可能地保持简洁。这是因为我们并不希望在每条引用型实例变量的写指令后跟着一大串注入的指令。

    因此,写屏障并不会判断更新后的引用是否指向新生代中的对象,而是宁可错杀,不可放过,一律当成可能指向新生代对象的引用。

    虽然写屏障不可避免地带来一些开销,但是它能够加大 Minor GC 的吞吐率( 应用运行时间 /(应用运行时间 + 垃圾回收时间) )。总的来说还是值得的。不过,在高并发环境下,写屏障又带来了虚共享(false sharing)问题 [2]。

    在介绍对象内存布局中我曾提到虚共享问题,讲的是几个 volatile 字段出现在同一缓存行里造成的虚共享。这里的虚共享则是卡表中不同卡的标识位之间的虚共享问题。

    在 HotSpot 中,卡表是通过 byte 数组来实现的。对于一个 64 字节的缓存行来说,如果用它来加载部分卡表,那么它将对应 64 张卡,也就是 32KB 的内存。

    如果同时有两个 Java 线程,在这 32KB 内存中进行引用更新操作,那么也将造成存储卡表的同一部分的缓存行的写回、无效化或者同步操作,因而间接影响程序性能。

    为此,HotSpot 引入了一个新的参数 -XX:+UseCondCardMark,来尽量减少写卡表的操作。其伪代码如下所示:

    if (CARD_TABLE [this address >> 9] != DIRTY) 
      CARD_TABLE [this address >> 9] = DIRTY;

    总结与实践

    今天我介绍了 Java 虚拟机中垃圾回收具体实现的一些通用知识。

    Java 虚拟机将堆分为新生代和老年代,并且对不同代采用不同的垃圾回收算法。其中,新生代分为 Eden 区和两个大小一致的 Survivor 区,并且其中一个 Survivor 区是空的。

    在只针对新生代的 Minor GC 中,Eden 区和非空 Survivor 区的存活对象会被复制到空的 Survivor 区中,当 Survivor 区中的存活对象复制次数超过一定数值时,它将被晋升至老年代。

    因为 Minor GC 只针对新生代进行垃圾回收,所以在枚举 GC Roots 的时候,它需要考虑从老年代到新生代的引用。为了避免扫描整个老年代,Java 虚拟机引入了名为卡表的技术,大致地标出可能存在老年代到新生代引用的内存区域。

    附录:Java 虚拟机中的垃圾回收器

    针对新生代的垃圾回收器共有三个:SerialParallel ScavengeParallel New。这三个采用的都是标记 - 复制算法。其中,Serial 是一个单线程的,Parallel New 可以看成 Serial 的多线程版本。Parallel Scavenge 和 Parallel New 类似,但更加注重吞吐率。此外,Parallel Scavenge 不能与 CMS 一起使用。

    针对老年代的垃圾回收器也有三个:刚刚提到的 Serial OldParallel Old,以及 CMS。Serial Old 和 Parallel Old 都是标记 - 压缩算法。同样,前者是单线程的,而后者可以看成前者的多线程版本。

    CMS 采用的是标记 - 清除算法并且是并发的。除了少数几个操作需要 Stop-the-world 之外,它可以在应用程序运行过程中进行垃圾回收。在并发收集失败的情况下,Java 虚拟机会使用其他两个压缩型垃圾回收器进行一次垃圾回收。由于 G1 的出现,CMS 在 Java 9 中已被废弃 [3]。

    G1(Garbage First)是一个横跨新生代和老年代的垃圾回收器。实际上,它已经打乱了前面所说的堆结构,直接将堆分成极其多个区域。每个区域都可以充当 Eden 区、Survivor 区或者老年代中的一个。它采用的是标记 - 压缩算法,而且和 CMS 一样都能够在应用程序运行过程中并发地进行垃圾回收。

    G1 能够针对每个细分的区域来进行垃圾回收。在选择进行垃圾回收的区域时,它会优先回收死亡对象较多的区域。这也是 G1 名字的由来。

  • 相关阅读:
    calc常用
    windbg学习---.browse打开一个新的command 窗口
    Native wifi API使用
    驱动学习---PAE--virtual address to physics address
    windbg学习.formats--转换成各种进制
    windbg学习---!thread和.thread
    windbg学习----.process
    windbg学习---!process
    windbg命令----!idt
    16进制转换成字符串
  • 原文地址:https://www.cnblogs.com/yintingting/p/8892315.html
Copyright © 2020-2023  润新知