• python_线程、进程和协程


    线程

    Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 import threading,time
     7 
     8 def show(arg):
     9     time.sleep(2)
    10     print('线程: ' + str(arg))
    11 
    12 for i in range(5):
    13     t = threading.Thread(target=show,args=(i,))
    14     t.start()

    如上述代码创建了5个线程,target指向函数,arges参数传递数值。

    • 其它方法:
    1. start 线程准备就绪,等待CPU调度
    2. setName 为线程设置名称
    3. getName 获取线程名称
    4. setDaemon 设置为后台线程或前台线程(默认)。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
    5. join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
    6. run 线程被cpu调度后自动执行线程对象的run方法
    • setNamegetName使用方法
     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 import threading,time
     7 
     8 def test(i):
     9     print("线程:%s" %str(i))
    10     time.sleep(2)
    11 
    12 for i in range(2):
    13     t = threading.Thread(target=test,args=(i,))
    14     t.start()
    15     t.setName("我的线程: {0}".format(str(i)))
    16     print(t.getName())
    17 
    18 运行结果:
    19 线程:0
    20 我的线程: 0
    21 线程:1
    22 我的线程: 1
     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 import threading,time
     7 
     8 class MyThread(threading.Thread):
     9     def __init__(self,num):
    10         threading.Thread.__init__(self)
    11         self.num = num
    12 
    13     def run(self):
    14         print("running thread:%s" % self.num)
    15         time.sleep(2)
    16 
    17 if __name__ == '__main__':
    18     for i in range(2):
    19         t1 = MyThread(i)
    20         t1.start()
    21         t1.setName("我的线程: {0}".format(str(i)))
    22         print(t1.getName())
    23 
    24 运行结果:
    25 running thread:0
    26 我的线程: 0
    27 running thread:1
    28 我的线程: 1
    自定义线程类
    •  setDaemon方法使用
     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 import threading,time
     7 
     8 def run(num):
     9     print("running thread %s" % str(num))
    10     time.sleep(2)
    11     print("OK! %s" % str(num))
    12 
    13 for i in range(2):
    14     t = threading.Thread(target=run,args=(i,))
    15     #未使用setDaemon时默认是前台线程
    16     #t.setDaemon(True)
    17     t.start()
    18     t.setName("MyThread_{0}".format(str(i)))
    19     print(t.getName())
    20 
    21 运行结果:
    22 running thread 0
    23 MyThread_0
    24 running thread 1
    25 MyThread_1
    26 OK! 1
    27 OK! 0

    后台线程:

     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 import threading,time
     7 
     8 def run(num):
     9     print("running thread %s" % str(num))
    10     time.sleep(2)
        #主线程执行结束后,不会执行以下语句
    11 print("OK! %s" % str(num)) 12 13 for i in range(2): 14 t = threading.Thread(target=run,args=(i,)) 15 #使用setDaemon时是后台线程 16 t.setDaemon(True) 17 t.start() 18 t.setName("MyThread_{0}".format(str(i))) 19 print(t.getName()) 20 21 22 运行结果: 23 running thread 0 24 MyThread_0 25 running thread 1 26 MyThread_1
    •  join用法理解

    当未使用join方法时候,先执行完主线程再根据超时决定等待子线程执行完才能程序结束;如果使用join方法,先执行子线程执行完后,才开始执行下一步主线程,此方法没有达到并行效果。

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'yinjia'
     4 
     5 import time,threading
     6 
     7 def do_thread(num):
     8     time.sleep(3)
     9     print("this is thread %s" % str(num))
    10 
    11 for i in range(2):
    12     t = threading.Thread(target=do_thread, args=(i,))
    13     t.start()
    14     t.setName("Mythread_{0}".format(str(i)))
    15     print("print in main thread: thread name:", t.getName())
    16 
    17 运行效果:【#先同时执行两个主线程,等待3秒后再执行两个子线程】
    18 print in main thread: thread name: Mythread_0  #主线程
    19 print in main thread: thread name: Mythread_1  #主线程
    20 this is thread 0 #子线程
    21 this is thread 1 #子线程

    使用join效果如下:

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ ='yinjia'
     4 
     5 import time,threading
     6 
     7 def do_thread(num):
     8     time.sleep(3)
     9     print("this is thread %s" % str(num))
    10 
    11 for i in range(2):
    12     t = threading.Thread(target=do_thread, args=(i,))
    13     t.start()
    14     t.join() #增加join
    15     t.setName("Mythread_{0}".format(str(i)))
    16     print("print in main thread: thread name:", t.getName())
    17 
    18 
    19 运行结果:【先执行子线程,然后再执行主线程,单一逐步执行】
    20 this is thread 0
    21 print in main thread: thread name: Mythread_0
    22 this is thread 1
    23 print in main thread: thread name: Mythread_1
    • 线程锁(Lock、RLock)

    线程是共享内存,当多个线程对一个公共变量修改数据,会导致线程争抢问题,为了解决此问题,采用线程锁。

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 import time,threading
     6 
     7 gl_num = 0
     8 lock = threading.RLock()
     9 
    10 def Func():
    11     global gl_num
    12     #加锁
    13     lock.acquire()
    14     gl_num += 1
    15     time.sleep(1)
    16     print(gl_num)
    17     #解锁
    18     lock.release()
    19 
    20 for i in range(10):
    21     t = threading.Thread(target=Func)
    22     t.start()
    • 信号量(Semaphore)

    信号量同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'yinjia'
     4 
     5 import time,threading
     6 
     7 def run(n):
     8     semaphore.acquire()
     9     time.sleep(1)
    10     print("run the thread: %s" % n)
    11     semaphore.release()
    12 
    13 if __name__ == '__main__':
    14     num = 0
    15     semaphore = threading.BoundedSemaphore(5)  # 最多允许5个线程同时运行
    16     for i in range(20):
    17         t = threading.Thread(target=run, args=(i,))
    18         t.start()
    • 事件(event)

    事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 import time,threading
     6 
     7 def run(event):
     8     print("start")
     9     event.wait()
    10     print('END.....')
    11 
    12 event_obj = threading.Event()
    13 for i in range(2):
    14     t = threading.Thread(target=run,args=(event_obj,))
    15     t.start()
    16 
    17 event_obj.clear()
    18 inp = input("input: ")
    19 if inp == 'true':
    20     event_obj.set()
    21 
    22 #运行结果:
    23 start
    24 start
    25 input: true
    26 END.....
    27 END.....
    • 条件Condition

    满足条件,才能释放N个线程。

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 import time,threading
     6 
     7 def condition_func():
     8     ret = False
     9     inp = input('>>>')
    10     if inp == '1':
    11         ret = True
    12     return ret
    13 
    14 def run(n):
    15     con.acquire()
    16     con.wait_for(condition_func)
    17     print("run the thread: %s" %n)
    18     con.release()
    19 
    20 if __name__ == '__main__':
    21 
    22     con = threading.Condition()
    23     for i in range(10):
    24         t = threading.Thread(target=run, args=(i,))
    25         t.start()
    26 
    27 #运行结果:
    28 >>>1
    29 run the thread: 0
    30 >>>1
    31 run the thread: 1
    32 >>>1
    33 run the thread: 2
    • 定时器
     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 from threading import Timer
     6 
     7 def hello():
     8     print("hello, world")
     9 
    10 t = Timer(1, hello)
    11 t.start()

     进程

    •  进程数据共享

     方法一:Array

     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 from multiprocessing import Process, Array, RLock
     7 
     8 def Foo(lock,temp,i):
     9     """
    10     将第0个数加100
    11     """
    12     lock.acquire()
    13     temp[0] = 100+i
    14     for item in temp:
    15         print(i,'----->',item)
    16     lock.release()
    17 
    18 lock = RLock()
    19 temp = Array('i', [11, 22, 33, 44])
    20 
    21 for i in range(20):
    22     p = Process(target=Foo,args=(lock,temp,i,))
    23     p.start()

    方法二:manage.dict()共享数据

     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 from multiprocessing import Process, Manager
     6 
     7 manage = Manager()
     8 dic = manage.dict()
     9 
    10 
    11 def Foo(i):
    12     dic[i] = 100 + i
    13     print(dic)
    14     print(dic.values())
    15 
    16 
    17 for i in range(2):
    18     p = Process(target=Foo, args=(i,))
    19     p.start()
    20     p.join()
    • 进程池

     进程池方法: 
    apply(func[, args[, kwds]]): 阻塞的执行,比如创建一个有3个线程的线程池,当执行时是创建完一个 执行完函数再创建另一个,变成一个线性的执行 
    apply_async(func[, args[, kwds[, callback]]]) : 它是非阻塞执行,同时创建3个线程的线程池,同时执行,只要有一个执行完立刻放回池子待下一个执行,并行的执行 
    close(): 关闭pool,使其不在接受新的任务。 
    terminate() : 结束工作进程,不在处理未完成的任务。 
    join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 from multiprocessing import Pool
     6 import time
     7 
     8 def myFun(i):
     9     time.sleep(2)
    10     return i+100
    11 
    12 def end_call(arg):
    13     print("end_call",arg)
    14 
    15 p = Pool(5)
    16 #print(p.apply(myFun,(1,)))
    17 #print(p.apply_async(func =myFun, args=(1,)).get())
    18 
    19 print(p.map(myFun,range(10)))
    20 
    21 for i in range(10):
    22     p.apply_async(func=myFun,args=(i,),callback=end_call)
    23 
    24 print("end")
    25 p.close()
    26 p.join()
    • 生产者&消费型

    产生数据的模块,就形象地称为生产者;而处理数据的模块,就称为消费者。在生产者与消费者之间在加个缓冲区,我们形象的称之为仓库,生产者负责往仓库了进商 品,而消费者负责从仓库里拿商品,这就构成了生产者消费者模型。

     1 #!/usr/bin/env python
     2 #coding=utf-8
     3 __author__ = 'yinjia'
     4 
     5 
     6 import queue
     7 import threading,time
     8 
     9 
    10 message = queue.Queue(10)
    11 
    12 
    13 def producer():
    14     name = threading.current_thread().getName()
    15     print(name + "线程启动....")
    16     for i in range(10):
    17         time.sleep(1)
    18         print('33[45m<%s> 生产了 [%s]个饺子33[0m' % (name, i))
    19         message.put(name)
    20 
    21 
    22 def consumer():
    23     name = threading.current_thread().getName()
    24     print(name + "线程启动.....")
    25     for i in range(10):
    26         message.get()
    27         print('33[43m<%s> 吃了 [%s]个饺子33[0m' % (name, i))
    28 
    29 
    30 if __name__ == '__main__':
    31 
    32     p = threading.Thread(target=producer, name='东北饺子店')
    33     c = threading.Thread(target=consumer, name='消费者')
    34     p.start()
    35     c.start()

     运行结果:

    协程

    协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

    协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;

    • gevent
     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 import gevent
     6 
     7 def foo():
     8     print('Running in foo')
     9     gevent.sleep(0)
    10     print('Explicit context switch to foo again')
    11 
    12 def bar():
    13     print('Explicit context to bar')
    14     gevent.sleep(0)
    15     print('Implicit context switch back to bar')
    16 
    17 gevent.joinall([
    18     gevent.spawn(foo),
    19     gevent.spawn(bar),
    20 ])
    21 
    22 #运行结果:
    23 Running in foo
    24 Explicit context to bar
    25 Explicit context switch to foo again
    26 Implicit context switch back to bar
    • 遇到IO操作自动切换
     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 
     4 from gevent import monkey; monkey.patch_all()
     5 import gevent
     6 import urllib.request
     7 
     8 def f(url):
     9     print('GET: %s' % url)
    10     resp = urllib.request.urlopen(url)
    11     data = resp.read()
    12     print('%d bytes received from %s.' % (len(data), url))
    13 
    14 gevent.joinall([
    15         gevent.spawn(f, 'https://www.python.org/'),
    16         gevent.spawn(f, 'https://www.baidu.com/'),
    17         gevent.spawn(f, 'https://github.com/'),
    18 ])
    19 
    20 #运行结果:
    21 GET: https://www.python.org/
    22 GET: https://www.baidu.com/
    23 GET: https://github.com/
    24 227 bytes received from https://www.baidu.com/.
    25 49273 bytes received from https://www.python.org/.
    26 53756 bytes received from https://github.com/.

     上下文管理

     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 import contextlib
     6 
     7 @contextlib.contextmanager
     8 def tag(name):
     9     print("<%s>" % name)
    10     yield
    11     print("</%s>" % name)
    12 
    13 with tag("h1"):
    14     print("foo")
    15 
    16 #运行结果:
    17 <h1>
    18 foo
    19 </h1>
     1 #!/usr/bin/env python
     2 # _*_ coding:utf-8 _*_
     3 __author__ = 'Administrator'
     4 
     5 import contextlib
     6 
     7 @contextlib.contextmanager
     8 def myopen(file_path,mode):
     9     f = open(file_path,mode,encoding='utf-8')
    10     try:
    11         yield f
    12     finally:
    13         f.close()
    14 with myopen('index.html','r') as file_obj:
    15     for i in file_obj:
    16         print(i)

    更多方法参见:https://docs.python.org/3.6/library/contextlib.html

  • 相关阅读:
    编写StyleCop自定义规则教程(二)校验规则增加配置参数
    XtraReport学习笔记之Bookmark (一)
    Web Application Firewall(WAF)
    CAN/CFN/CPN
    什么是 SASE?
    FEC 前向纠错
    VPP usage
    强化学习
    What Is a RAN Intelligent Controller (RIC)?
    Read Up: Connection Management xAPP for ORAN RIC: A Graph Neural Network and Reinforcement Learning Approach
  • 原文地址:https://www.cnblogs.com/yinjia/p/8683146.html
Copyright © 2020-2023  润新知