一、什么是 Promise
1.1 Promise
的前世今生
Promise
最早出现在 1988 年,由 Barbara Liskov、Liuba Shrira 首创(论文:Promises: Linguistic Support for Efficient Asynchronous Procedure Calls in Distributed Systems)。并且在语言 MultiLisp 和 Concurrent Prolog 中已经有了类似的实现。
JavaScript 中,Promise
的流行是得益于 jQuery 的方法 jQuery.Deferred()
,其他也有一些更精简独立的 Promise
库,例如:Q、When、Bluebird。
# Q / 2010
import Q from 'q'
function wantOdd () {
const defer = Q.defer()
const num = Math.floor(Math.random() * 10)
if (num % 2) {
defer.resolve(num)
} else {
defer.reject(num)
}
return defer.promise
}
wantOdd()
.then(num => {
log(`Success: ${num} is odd.`) // Success: 7 is odd.
})
.catch(num => {
log(`Fail: ${num} is not odd.`)
})
由于 jQuery 并没有严格按照规范来制定接口,促使了官方对 Promise
的实现标准进行了一系列重要的澄清,该实现规范被命名为 Promise/A+。后来 ES6(也叫 ES2015,2015 年 6 月正式发布)也在 Promise/A+ 的标准上官方实现了一个 Promise
接口。
new Promise( function(resolve, reject) {...} /* 执行器 */ );
想要实现一个 Promise
,必须要遵循如下规则:
Promise
是一个提供符合标准的then()
方法的对象。- 初始状态是
pending
,能够转换成fulfilled
或rejected
状态。 - 一旦
fulfilled
或rejected
状态确定,再也不能转换成其他状态。 - 一旦状态确定,必须要返回一个值,并且这个值是不可修改的。
ECMAScript's Promise global is just one of many Promises/A+ implementations.
主流语言对于 Promise
的实现:Golang/go-promise、Python/promise、C#/Real-Serious-Games/c-sharp-promise、PHP/Guzzle Promises、Java/IOU、Objective-C/PromiseKit、Swift/FutureLib、Perl/stevan/promises-perl。
旨在解决的问题
由于 JavaScript 是单线程事件驱动的编程语言,通过回调函数管理多个任务。在快速迭代的开发中,因为回调函数的滥用,很容易产生被人所诟病的回调地狱问题。Promise
的异步编程解决方案比回调函数更加合理,可读性更强。
传说中比较夸张的回调:
现实业务中依赖关系比较强的回调:
# 回调函数
function renderPage () {
const secret = genSecret()
// 获取用户令牌
getUserToken({
secret,
success: token => {
// 获取游戏列表
getGameList({
token,
success: data => {
// 渲染游戏列表
render({
list: data.list,
success: () => {
// 埋点数据上报
report()
},
fail: err => {
console.error(err)
}
})
},
fail: err => {
console.error(err)
}
})
},
fail: err => {
console.error(err)
}
})
}
使用 Promise
梳理流程后:
# Promise
function renderPage () {
const secret = genSecret()
// 获取用户令牌
getUserToken(token)
.then(token => {
// 获取游戏列表
return getGameList(token)
})
.then(data => {
// 渲染游戏列表
return render(data.list)
})
.then(() => {
// 埋点数据上报
report()
})
.catch(err => {
console.error(err)
})
}
1.2 实现一个超简易版的 Promise
Promise
的运转实际上是一个观察者模式,then()
中的匿名函数充当观察者,Promise
实例充当被观察者。
const p = new Promise(resolve => setTimeout(resolve.bind(null, 'from promise'), 3000))
p.then(console.log.bind(null, 1))
p.then(console.log.bind(null, 2))
p.then(console.log.bind(null, 3))
p.then(console.log.bind(null, 4))
p.then(console.log.bind(null, 5))
// 3 秒后
// 1 2 3 4 5 from promise
# 实现
const defer = () => {
let pending = [] // 充当状态并收集观察者
let value = undefined
return {
resolve: (_value) => { // FulFilled!
value = _value
if (pending) {
pending.forEach(callback => callback(value))
pending = undefined
}
},
then: (callback) => {
if (pending) {
pending.push(callback)
} else {
callback(value)
}
}
}
}
# 模拟
const mockPromise = () => {
let p = defer()
setTimeout(() => {
p.resolve('success!')
}, 3000)
return p
}
mockPromise().then(res => {
console.log(res)
})
console.log('script end')
// script end
// 3 秒后
// success!
二、Promise
怎么用
2.1 使用 Promise
异步编程
在 Promise
出现之前往往使用回调函数管理一些异步程序的状态。
# 常见的异步 Ajax 请求格式
ajax(url, successCallback, errorCallback)
Promise
出现后使用 then()
接收事件的状态,且只会接收一次。
案例:插件初始化。
使用回调函数:
# 插件代码
let ppInitStatus = false
let ppInitCallback = null
PP.init = callback => {
if (ppInitStatus) {
callback && callback(/* 数据 */)
} else {
ppInitCallback = callback
}
}
// ...
// ...
// 经历了一系列同步异步程序后初始化完成
ppInitCallback && ppInitCallback(/* 数据 */)
ppInitStatus = true
# 第三方调用
PP.init(callback)
使用 Promise:
# 插件代码
let initOk = null
const ppInitStatus = new Promise(resolve => initOk = resolve)
PP.init = callback => {
ppInitStatus.then(callback).catch(console.error)
}
// ...
// ...
// 经历了一系列同步异步程序后初始化完成
initOk(/* 数据 */)
# 第三方调用
PP.init(callback)
相对于使用回调函数,逻辑更清晰,什么时候初始化完成和触发回调一目了然,不再需要重复判断状态和回调函数。当然更好的做法是只给第三方输出状态和数据,至于如何使用由第三方决定。
# 插件代码
let initOk = null
PP.init = new Promise(resolve => initOk = resolve)
// ...
// ...
// 经历了一系列同步异步程序后初始化完成
initOk(/* 数据 */)
# 第三方调用
PP.init.then(callback).catch(console.error)
2.2 链式调用
then()
必然返回一个 Promise
对象,Promise
对象又拥有一个 then()
方法,这正是 Promise
能够链式调用的原因。
const p = new Promise(r => r(1))
.then(res => {
console.log(res) // 1
return Promise.resolve(2)
.then(res => res + 10) // === new Promise(r => r(1))
.then(res => res + 10) // 由此可见,每次返回的是实例后面跟的最后一个 then
})
.then(res => {
console.log(res) // 22
return 3 // === Promise.resolve(3)
})
.then(res => {
console.log(res) // 3
})
.then(res => {
console.log(res) // undefined
return '最强王者'
})
p.then(console.log.bind(null, '是谁活到了最后:')) // 是谁活到了最后: 最强王者
由于返回一个 Promise
结构体永远返回的是链式调用的最后一个 then()
,所以在处理封装好的 Promise
接口时没必要在外面再包一层 Promise
。
# 包一层 Promise
function api () {
return new Promise((resolve, reject) => {
axios.get(/* 链接 */).then(data => {
// ...
// 经历了一系列数据处理
resolve(data.xxx)
})
})
}
# 更好的做法:利用链式调用
function api () {
return axios.get(/* 链接 */).then(data => {
// ...
// 经历了一系列数据处理
return data.xxx
})
}
2.3 管理多个 Promise
实例
Promise.all()
/ Promise.race()
可以将多个 Promise 实例包装成一个 Promise 实例,在处理并行的、没有依赖关系的请求时,能够节约大量的时间。
function wait (ms) {
return new Promise(resolve => setTimeout(resolve.bind(null, ms), ms))
}
# Promise.all
Promise.all([wait(2000), wait(4000), wait(3000)])
.then(console.log)
// 4 秒后 [ 2000, 4000, 3000 ]
# Promise.race
Promise.race([wait(2000), wait(4000), wait(3000)])
.then(console.log)
// 2 秒后 2000
2.4 Promise
和 async
/ await
async
/ await
实际上只是建立在 Promise
之上的语法糖,让异步代码看上去更像同步代码,所以 async
/ await
在 JavaScript 线程中是非阻塞的,但在当前函数作用域内具备阻塞性质。
let ok = null
async function foo () {
console.log(1)
console.log(await new Promise(resolve => ok = resolve))
console.log(3)
}
foo() // 1
ok(2) // 2 3
使用 async
/ await
的优势:
-
简洁干净
写更少的代码,不需要特地创建一个匿名函数,放入
then()
方法中等待一个响应。# Promise function getUserInfo () { return getData().then( data => { return data } ) } # async / await async function getUserInfo () { return await getData() }
-
条件语句
当一个异步返回值是另一段逻辑的判断条件,链式调用将随着层级的叠加变得更加复杂,让人很容易在代码中迷失自我。使用
async
/await
将使代码可读性变得更好。# Promise function getGameInfo () { getUserAbValue().then( abValue => { if (abValue === 1) { return getAInfo().then( data => { // ... } ) } else { return getBInfo().then( data => { // ... } ) } } ) } # async / await async function getGameInfo () { const abValue = await getUserAbValue() if (abValue === 1) { const data = await getAInfo() // ... } else { // ... } }
-
中间值
异步函数常常存在一些异步返回值,作用仅限于成为下一段逻辑的入场券,如果经历层层链式调用,很容易成为另一种形式的“回调地狱”。
# Promise function getGameInfo () { getToken().then( token => { getLevel(token).then( level => { getInfo(token, level).then( data => { // ... } ) } ) } ) } # async / await async function getGameInfo() { const token = await getToken() const level = await getLevel(token) const data = await getInfo(token, level) // ... }
-
靠谱的
await
await 'qtt'
等于await Promise.resolve('qtt')
,await
会把任何不是Promise
的值包装成Promise
,看起来貌似没有什么用,但是在处理第三方接口的时候可以 “Hold” 住同步和异步返回值,否则对一个非Promise
返回值使用then()
链式调用则会报错。
使用 async
/ await
的缺点:
-
async
永远返回Promise
对象,不够灵活,很多时候我只想单纯返回一个基本类型值。 -
await
阻塞async
函数中的代码执行,在上下文关联性不强的代码中略显累赘。# async / await async function initGame () { render(await getGame()) // 等待获取游戏执行完毕再去获取用户信息 report(await getUserInfo()) } # Promise function initGame () { getGame() .then(render) .catch(console.error) getUserInfo() // 获取用户信息和获取游戏同步进行 .then(report) .catch(console.error) }
2.5 错误处理
-
链式调用中尽量结尾跟
catch
捕获错误,而不是第二个匿名函数。因为标准里注明了若then()
方法里面的参数不是函数则什么都不错,所以catch(rejectionFn)
其实就是then(null, rejectionFn)
的别名。anAsyncFn().then( resolveSuccess, rejectError )
在以上代码中,
anAsyncFn()
抛出来的错误rejectError
会正常接住,但是resolveSuccess
抛出来的错误将无法捕获,所以更好的做法是永远使用catch
。anAsyncFn() .then(resolveSuccess) .catch(rejectError)
倘若讲究一点,也可以通过
resolveSuccess
来捕获anAsyncFn()
的错误,catch
捕获resolveSuccess
的错误。anAsyncFn() .then( resolveSuccess, rejectError ) .catch(handleError)
-
通过全局属性监听未被处理的 Promise 错误。
浏览器环境(
window
)的拒绝状态监听事件:unhandledrejection
当 Promise 被拒绝,并且没有提供拒绝处理程序时,触发该事件。rejectionhandled
当 Promise 被拒绝时,若拒绝处理程序被调用,触发该事件。
// 初始化列表 const unhandledRejections = new Map() // 监听未处理拒绝状态 window.addEventListener('unhandledrejection', e => { unhandledRejections.set(e.promise, e.reason) }) // 监听已处理拒绝状态 window.addEventListener('rejectionhandled', e => { unhandledRejections.delete(e.promise) }) // 循环处理拒绝状态 setInterval(() => { unhandledRejections.forEach((reason, promise) => { console.log('handle: ', reason.message) promise.catch(e => { console.log(`I catch u!`, e.message) }) }) unhandledRejections.clear() }, 5000)
注意:Promise.reject()
和 new Promise((resolve, reject) => reject())
这种方式不能直接触发 unhandledrejection
事件,必须是满足已经进行了 then()
链式调用的 Promise
对象才行。
2.6 取消一个 Promise
当执行一个超级久的异步请求时,若超过了能够忍受的最大时长,往往需要取消此次请求,但是 Promise
并没有类似于 cancel()
的取消方法,想结束一个 Promise
只能通过 resolve
或 reject
来改变其状态,社区已经有了满足此需求的开源库 Speculation。
或者利用 Promise.race()
的机制来同时注入一个会超时的异步函数,但是 Promise.race()
结束后主程序其实还在 pending
中,占用的资源并没有释放。
Promise.race([anAsyncFn(), timeout(5000)])
2.7 迭代器的应用
若想按顺序执行一堆异步程序,可使用 reduce
。每次遍历返回一个 Promise
对象,在下一轮 await
住从而依次执行。
function wasteTime (ms) {
return new Promise(resolve => setTimeout(() => {
resolve(ms)
console.log('waste', ms)
}, ms))
}
// 依次浪费 3 4 5 3 秒 === 15 秒
const arr = [3000, 4000, 5000, 3000]
arr.reduce(async (last, curr) => {
await last
return wasteTime(curr)
}, undefined)
三、总结
- 每当要使用异步代码时,请考虑使用
Promise
。 Promise
中所有方法的返回类型都是Promise
。Promise
中的状态改变是一次性的,建议在reject()
方法中传递Error
对象。- 确保为所有的
Promise
添加then()
和catch()
方法。 - 使用
Promise.all()
行运行多个Promise
。 - 倘若想在
then()
或catch()
后都做点什么,可使用finally()
。 - 可以将多个
then()
挂载在同一个Promise
上。 async
(异步)函数返回一个Promise
,所有返回Promise
的函数也可以被视作一个异步函数。await
用于调用异步函数,直到其状态改变(fulfilled
orrejected
)。- 使用
async
/await
时要考虑上下文的依赖性,避免造成不必要的阻塞。